Manhattan Distance-based K-Medoids Clustering Improvement for Diagnosing Diabetic Disease

  • Solikhun AMIK & STIKOM Tunas Bangsa
  • Muhammad Rahmansyah Siregar STIKOM Tunas Bangsa
  • Lise Pujiastuti STMIK Antar Bangsa
  • Mochamad Wahyudi Universitas Bina Sarana Informatika
Keywords: Diabetes, K- Medoid, Manhattan Distance, Quantum Computing, Quantum Bit

Abstract

Diabetes is a metabolic disorder characterized by blood glucose levels above normal limits. Diabetes occurs when the body is unable to produce sufficient insulin to regulate blood sugar levels. As a result, blood sugar management becomes impaired and there is no cure for diabetes. Early detection of diabetes provides an opportunity to delay or prevent its progression into acute stages. Clustering can help identify patterns and groups of diabetes symptoms by analyzing attributes that indicate these symptoms. In this study, researchers are using K-Medoid and Quantum K-Medoid methods for clustering diabetes data. Quantum computing utilizes quantum bits, or qubits, which can represent multiple states at the same time. Compared to classical computers, quantum computing has the potential for an exponential speedup in problem-solving. Researchers conducted a comparison between two methods: the classic K-Medoids method and the K-Medoids method utilizing quantum computing.  The researchers found that both Quantum K-Medoid and Classic K-Medoid achieved the same clustering accuracy of 91%. In testing with the Quantum K-Medoids algorithm, it was found that the cost value in the 8th epoch showed a significant decrease compared to the Classical K-Medoids algorithm. This demonstrates that Quantum K-Medoid can be considered a viable alternative for clustering purposes.

Downloads

Download data is not yet available.

References

F. Valenzuela, A. García, E. Ruiz, M. Vázquez, J. Cortez, and A. Espinoza, “An IoT-based glucose monitoring algorithm to prevent diabetes complications,” Applied Sciences (Switzerland), vol. 10, no. 3, pp. 1–12, 2020,

doi: 10.3390/app10030921.

A. R. Nasser et al., “Iot and cloud computing in health-care: A new wearable device and cloud-based deep learning algorithm for monitoring of diabetes,” Electronics (Switzerland), vol. 10, no. 21, 2021,

doi: 10.3390/electronics10212719.

M. O. Edeh et al., “A Classification Algorithm-Based Hybrid Diabetes Prediction Model,” Frontiers in Public Health, vol. 10, no. March, pp. 1–7, 2022,

doi: 10.3389/fpubh.2022.829519.

A. Paleczek, D. Grochala, and A. Rydosz, “Artificial breath classification using xgboost algorithm for diabetes detection,” Sensors, vol. 21, no. 12, 2021,

doi: 10.3390/s21124187.

A. Maulana et al., “Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm,” Infolitika Journal of Data Science, vol. 1, no. 1, pp. 1–7, 2023,

doi: 10.60084/ijds.v1i1.72.

Y. Istianto and S. ’Uyun, “Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, p. 861, 2021,

doi: 10.25126/jtiik.2021842990.

I. Setiaji and A. Z. Fanani, “Optimasi K-means Clustering Dengan Menggunakan Particle Swarm Optimization Untuk Menentukan Jumlah Cluster Pada Kanker Serviks,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1463–1473, 2023,

doi: 10.30865/mib.v7i3.6292.

M. I. Zarkasyi, H. Mawengkang, and O. S. Sitompul, “Optimasi Cluster Pada K-Means Clustering Dengan Teknik Reduksi Dimensi Dataset Menggunakan Gini Index,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, 2022,

doi: 10.47065/bits.v4i3.2458.

T. A. Mulyadi and D. Purnomo, “Optimasi Pelayanan Kapal Penumpang melalui Clustering Penumpang dengan Metode Silhouette Coefficient,” Edumatic: Jurnal Pendidikan Informatika, vol. 7, no. 2, pp. 217–226, 2023,

doi: 10.29408/edumatic.v7i2.21067.

M. D. Doi, A. Rusgiyono, and T. Wuryandari, “Analisis K-Medoids Dengan Validasi Indeks Pada Ipm Daerah 3t Di Indonesia,” Jurnal Gaussian, vol. 12, no. 2, pp. 178–188, 2023,

doi: 10.14710/j.gauss.12.2.178-188.

E. Syafaqoh, “Pengelompokan Provinsi Di Indonesia Berdasarkan Luas Panen, Produksi, Dan Produktivitas Padi Menggunakan Algoritma K-Medoid,” Fakultas Sains dan Teknologi-Universitas PGRI Kanjuruhan Malang, vol. 5, no. 3, p. 2023, 2023.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 9, no. 3, pp. 102–109, 2019,

doi: 10.31940/matrix.v9i3.1662.

H. Ramdan, A. Gunawan, and G. Gunawan, “Analisis Pengaruh Kardiovaskular Dalam Kasus Covid-19 Terhadap Obesitas Menggunakan Metode K-Medoid,” Indonesian Journal Computer Science, vol. 3, no. 1, pp. 16–24, Apr. 2024,

doi: 10.31294/ijcs.v3i1.2558.

W. Wahyu Pribadi, A. Yunus, and A. S. Wiguna, “Perbandingan Metode K-Means Euclidean Distance Dan Manhattan Distance Pada Penentuan Zonasi Covid-19 Di Kabupaten Malang,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 493–500, 2022,

doi: 10.36040/jati.v6i2.4808.

T. M. Ghazal et al., “Performances of k-means clustering algorithm with different distance metrics,” Intelligent Automation and Soft Computing, vol. 30, no. 2, pp. 735–742, 2021,

doi: 10.32604/iasc.2021.019067.

R. F. N. Alifah and A. C. Fauzan, “Implementasi Algoritma K-Means Clustering Berbasis Jarak Manhattan untuk Klasterisasi Konsentrasi Bidang Mahasiswa,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 5, no. 1. Universitas Nahdlatul Ulama Blitar, pp. 31–41, 2023.

doi: 10.28926/ilkomnika.v5i1.542.

R. Suwanda, Z. Syahputra, and E. M. Zamzami, “Analysis of Euclidean Distance and Manhattan Distance in the K-Means Algorithm for Variations Number of Centroid K,” Journal of Physics: Conference Series, vol. 1566, no. 1, 2020,

doi: 10.1088/1742-6596/1566/1/012058.

S. Deshmukh, B. K. Behera, and P. Mulay, “Patient Data Analysis with the Quantum Clustering Method,” Quantum Reports, vol. 5, no. 1, pp. 138–155, 2023,

doi: 10.3390/quantum5010010.

C. Bauckhage, R. Sifa, and S. Wrobel, “Adiabatic Quantum Computing for Max-Sum Diversification,” in Proceedings of the 2020 SIAM International Conference on Data Mining, Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020, pp. 343–351.

doi: 10.1137/1.9781611976236.39.

V. Hassija et al., “Present landscape of quantum computing,” IET Quantum Communication, vol. 1, no. 2, pp. 42–48, 2020,

doi: 10.1049/iet-qtc.2020.0027.

F. Cleri, “Quantum computers, quantum computing, and quantum thermodynamics,” Frontiers in Quantum Science and Technology, vol. 3, no. August, pp. 1–29, 2024,

doi: 10.3389/frqst.2024.1422257.

A. Naik, E. Yeniaras, G. Hellstern, G. Prasad, and S. K. L. P. Vishwakarma, “From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance,” arXiv, pp. 1–64, Jun. 2023,

doi: 10.48550/arXiv.2307.01155.

U. Awan, L. Hannola, A. Tandon, R. K. Goyal, and A. Dhir, “Quantum computing challenges in the software industry. A fuzzy AHP-based approach,” Information and Software Technology, vol. 147, no. February, p. 106896, Jul. 2022,

doi: 10.1016/j.infsof.2022.106896.

T. Baidawi and Solikhun, “A Comparison of Madaline and Perceptron Algorithms on Classification with Quantum Computing Approach,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 2, pp. 280–287, Apr. 2024,

doi: 10.29207/resti.v8i2.5502.

F. F. C. Silva, P. M. S. Carvalho, and L. A. F. M. Ferreira, “A quantum computing approach for minimum loss problems in electrical distribution networks,” Scientific Reports, vol. 13, no. 1, p. 10777, Jul. 2023,

doi: 10.1038/s41598-023-37293-9.

N. Febrian and N. Noviandi, “Perbandingan Manhattan dan Euclidean Distance Untuk Pengelompokan Penyakit Jantung Menggunakan Algoritma K-Means,” ICIT Journal, vol. 10, no. 1, pp. 61–70, 2024,

doi: 10.33050/icit.v10i1.2860.

R. H. Siahaan, S. Purba, J. Siregar, M. F. S. Hutabarat, and R. Sitohang, “Quantum-Enhanced K-Medoids Clustering : Comparative Analysis of,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 7–10, 2024,

doi: 10.29207/resti.v8i5.5814.

K. Saravananathan and T. Velmurugan, “Quality Based Analysis of Clustering Algorithms using Diabetes Data for the Prediction of Disease,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11S2, pp. 448–452, Oct. 2019,

doi: 10.35940/ijitee.K1072.09811S219.

P. Lasek and Z. Mei, “Clustering and visualization of a high-dimensional diabetes dataset,” Procedia Computer Science, vol. 159, pp. 2179–2188, 2019,

doi: 10.1016/j.procs.2019.09.392.

L. Nigro and P. Fränti, “Two Medoid-Based Algorithms for Clustering Sets,” Algorithms, vol. 16, no. 7, pp. 1–17, 2023,

doi: 10.3390/a16070349.

Mifthahul Rahma and Muhammad Muhajir, “Komparasi Hierarchical Clustering Dan K-Medoid Clustering Terhadap Pengelompokan Satuan Kerja Perangkat Daerah (SKPD) Di Kabupaten Sleman Tahun 2021,” Emerging Statistics and Data Science Journal, vol. 2, no. 1, pp. 41–52, 2024,

doi: 10.20885/esds.vol2.iss.1.art5.

U. R. Gurning and M. Mustakim, “Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 1, pp. 48–55, Jun. 2021,

doi: 10.47065/bits.v3i1.1003.

A. C. Method, “Pengelompokkan Data Rekam Medis pada Penyakit Diabetes menggunakan Metode Divisive Analysis Clustering Clustering Medical Record Data on Diabetes Disease using Divisive,” vol. 13, pp. 1718–1731, 2024.

S. A. P. Raj and Vidyaathulasiraman, “Determining Optimal Number of K for e-Learning Groups Clustered using K-Medoid,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, pp. 400–407, 2021,

doi: 10.14569/IJACSA.2021.0120644.

W. Aprilyani, K. Kaslani, E. Wahyudin, R. Hamonangan, and R. Herdiana, “Klasterisasi Data Penjualan Alat Transportasi Dengan Rapidminer Menggunakan Metode K-Medoid,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1348–1353, 2024,

doi: 10.36040/jati.v8i2.8968.

F. Fathurrahman, S. Harini, and R. Kusumawati, “EVALUASI CLUSTERING K-MEANS DAN K-MEDOID PADA PERSEBARAN COVID-19 DI INDONESIA DENGAN METODE DAVIES-BOULDIN INDEX (DBI),” Jurnal Mnemonic, vol. 6, no. 2, pp. 117–128, Oct. 2023,

doi: 10.36040/mnemonic.v6i2.6642.

Martanto, S. Anwar, C. L. Rohmat, F. M. Basysyar, and Y. A. Wijaya, “Clustering of internet network usage using the K-Medoid method,” IOP Conference Series: Materials Science and Engineering, vol. 1088, no. 1, p. 012036, 2021,

doi: 10.1088/1757-899x/1088/1/012036.

E. Wahyudi, D. Meidelfi, Nofrizal, Z. Saam, and Juandi, “The Implementation of the K-Medoid Clustering for Grouping Hearing Loss Function on Excessive Smartphone Use,” International Journal on Informatics Visualization, vol. 7, no. 4, pp. 2523–2531, 2023,

doi: 10.30630/joiv.7.4.1873.

G. Corrente, C. Vincenzo Stanzione, and V. Stanzione, “Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle Problem,” Journal of Quantum Computing, vol. 5, no. 0, pp. 55–70, 2023,

doi: 10.32604/jqc.2023.044786.

Published
2024-12-24
How to Cite
Solikhun, Rahmansyah Siregar, M., Pujiastuti, L., & Wahyudi, M. (2024). Manhattan Distance-based K-Medoids Clustering Improvement for Diagnosing Diabetic Disease. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(6), 710 - 718. https://doi.org/10.29207/resti.v8i6.5894
Section
Information Systems Engineering Articles