Implementasi Algoritma Backpropagation Prediksi Kegagalan Siswa Pada Mata Pelajaran Matematika
Abstract
Students become those who can advance the nation. Schools and teachers are very helpful in creating smart and competent students. But often found students who fail, one of which is in the eyes of mathematics. With problems with students Mathematics study researchers want to help solve problems by using predictions on math subjects. In this study the researchers chose the object of research, namely in Padang State Middle School 39. This is quite a problem for students when teaching and learning mathematics subjects. Students do not understand mathematics and this problem will make students' grades decrease. By using student value data, a model is designed to predict students against mathematics subjects. The model uses the backpropagation algorithm. Data variables are taken from students' mathematical currency data, namely assignment 1, assignment 2, average, mid-semester and final semester grades. The data generated is 1 semester data and the number of students predicted is 30 students. The prediction results using the best model are training pattern data 5-2-1 with EPOCH process = 58 and MSE achievement when payment with MSE = 0,00989892 with an accuracy of 99,9901011. it can be cited that the backpropagation algorithm can be used to predict student errors in the eye Mathematics lessons as a guide for teachers
Downloads
References
[2] Anike Marleni et al, 2012. “Pengembangan Sistem Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Dokter Keluarga Menggunakan Backpropagation”. Seminar Nasional Teknologi dan Komunikasi (SENTIKA).
[3] Che Zhen-Guo et al, 2011. “Feed-Forward Neural Networks Training: A Comparison Between Genetic Algorithm and Back-Propagation Learning Algorithm”. International Journal of Innovative Computing, Information and Control..
[4] Dahriani Hakim Tanjung, 2015. “Jaringan Syaraf Tiruan dengan Backpropagation untuk Memprediksi Penyakit Asma”. Citec Journal.
[5] Devi Ch.Jyosthna et al, 2012.”ANN Approach for Weather Prediction Using Backpropagation”. International Journal of Engineering Trens and Technology.
[6] Fithri D.L, 2013. “Deteksi Penyakit pada Daun Tembakau dengan Menerapkan Algoritma Artificial Neural Network”. Jurnal SIMETRIS.
[7] Gupta Arti and Shreevastava, 2011. “Medical Diagnosis using Backpropagation Algorithm”. IJETAE.
[8] Kusuma Intan Widya, 2011. “Aplikasi Model Backpropagation Neural Network untuk Perkiraan Produksi Tebu pada PT. Perkebunan Nusantara IX”. Proseding.
[9] Zekson Arizona Matondang, 2013. “Jaringan Syaraf Tiruan dengan Algoritma Backpropagation untuk Penentuan Kelulusan Sidang Skripsi”. Pelita Informatika Budi Darma
Copyright (c) 2018 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;