Skin Cancer Classification Using a Hybrid Pre-trained CNN with Random Forest Classifier

  • Okky Darmawan Kostidjan Institut Teknologi Sepuluh Nopember
  • Yudhi Purwanto Institut Teknologi Sepuluh Nopember
  • Anny Yuniarti Institut Teknologi Sepuluh Nopember
Keywords: skin cancer, classification, CNN pre-trained, hybrid model

Abstract

Skin cancer, a leading cause of global mortality with 10 million deaths annually, is projected to increase rapidly if not diagnosed early. Traditional diagnosis relies on visual evaluation and histopathology, which are subjective and time-consuming. Recent advances in Convolutional Neural Networks (CNN) enable automated, accurate image analysis for early identification. This study explores pre-trained CNN models, including DenseNet-201, InceptionV3, MobileNet, ResNet50, and VGG16, by modifying them to better identify skin lesions as malignant or benign. The proposed models outperformed the state-of-the-art CNN models evaluated on publicity with traditional test data. The proposed models achieved 94.20% accuracy, which is higher than that of traditional CNN models.

Downloads

Download data is not yet available.

References

N. Hasan et al., “Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches,” Molecular Cancer, vol. 22, no. 1. BioMed Central Ltd, Dec. 01, 2023. doi: 10.1186/s12943-023-01854-3.

A. Deshpande, V.V. Estrela, and R. N, Computational Intelligence Methods for Super-Resolution in Image Processing Applications. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-67921-7.

G. M. Abd-Allah et al., “miRNAs as potential game-changers in melanoma: A comprehensive review,” Pathology Research and Practice, vol. 244. Elsevier GmbH, Apr. 01, 2023. doi: 10.1016/j.prp.2023.154424.

K. Urban, S. Mehrmal, P. Uppal, R. L. Giesey, and G. R. Delost, “The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017,” JAAD Int, vol. 2, pp. 98–108, Mar. 2021, doi: 10.1016/j.jdin.2020.10.013.

K. Shi et al., “Clinical characteristics of malignant melanoma in central China and predictors of metastasis,” Oncol Lett, Dec. 2019, doi: 10.3892/ol.2019.11219.

R. K. Singh, R. Gorantla, S. G. R. Allada, and P. Narra, “SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability,” PLoS One, vol. 17, no. 10, p. e0276836, Oct. 2022, doi: 10.1371/journal.pone.0276836.

K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari, “Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer,” Neuroscience Informatics, vol. 2, no. 4, p. 100034, Dec. 2022, doi: 10.1016/j.neuri.2021.100034.

M. A. Morid, A. Borjali, and G. Del Fiol, “A scoping review of transfer learning research on medical image analysis using ImageNet,” Computers in Biology and Medicine, vol. 128. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.compbiomed.2020.104115.

A. Takiddin, J. Schneider, Y. Yang, A. Abd-Alrazaq, and M. Househ, “Artificial intelligence for skin cancer detection: Scoping review,” Journal of Medical Internet Research, vol. 23, no. 11. JMIR Publications Inc., Nov. 01, 2021. doi: 10.2196/22934.

S. Medhat, H. Abdel-Galil, A. E. Aboutabl, and H. Saleh, “Skin cancer diagnosis using convolutional neural networks for smartphone images: A comparative study,” J Radiat Res Appl Sci, vol. 15, no. 1, pp. 262–267, Mar. 2022, doi: 10.1016/j.jrras.2022.03.008.

A. Faghihi, M. Fathollahi, and R. Rajabi, “Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models,” Multimed Tools Appl, Jun. 2023, doi: 10.1007/s11042-023-17735-2.

D. Keerthana, V. Venugopal, M. K. Nath, and M. Mishra, “Hybrid convolutional neural networks with SVM classifier for classification of skin cancer,” Biomedical Engineering Advances, vol. 5, p. 100069, Jun. 2023, doi: 10.1016/j.bea.2022.100069.

X. Ma, J. Shan, F. Ning, W. Li, and H. Li, “EFFNet: A skin cancer classification model based on feature fusion and random forests,” PLoS One, vol. 18, no. 10, p. e0293266, Oct. 2023, doi: 10.1371/journal.pone.0293266.

V. Venugopal, N. I. Raj, M. K. Nath, and N. Stephen, “A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images,” Decision Analytics Journal, vol. 8, Sep. 2023, doi: 10.1016/j.dajour.2023.100278.

A. Panesar, “Evaluating Machine Learning Models,” in Machine Learning and AI for Healthcare, Berkeley, CA: Apress, 2021, pp. 189–205. doi: 10.1007/978-1-4842-6537-6_7.

A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustainability (Switzerland), vol. 15, no. 7. MDPI, Apr. 01, 2023. doi: 10.3390/su15075930.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul. 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Sep. 2014.

P. V. S. P. Raghavendra, C. Charitha, K. G. Begum, and V. B. S. Prasath, “Deep Learning–Based Skin Lesion Multi-class Classification with Global Average Pooling Improvement,” J Digit Imaging, vol. 36, no. 5, pp. 2227–2248, Jul. 2023, doi: 10.1007/s10278-023-00862-5.

C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their impact to deep learning,” Multimed Tools Appl, vol. 79, no. 19–20, pp. 12777–12815, May 2020, doi: 10.1007/s11042-019-08453-9.

K. Mridha, Md. M. Uddin, J. Shin, S. Khadka, and M. F. Mridha, “An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System,” IEEE Access, vol. 11, pp. 41003–41018, 2023, doi: 10.1109/ACCESS.2023.3269694.

V. Venugopal, N. I. Raj, M. K. Nath, and N. Stephen, “A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images,” Decision Analytics Journal, vol. 8, Sep. 2023, doi: 10.1016/j.dajour.2023.100278.

X. Ma, J. Shan, F. Ning, W. Li, and H. Li, “EFFNet: A skin cancer classification model based on feature fusion and random forests,” PLoS One, vol. 18, no. 10 October, Oct. 2023, doi: 10.1371/journal.pone.0293266.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach Learn, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964.

L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

S. Abbas et al., “BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm,” PeerJ Comput Sci, vol. 7, p. e390, Mar. 2021, doi: 10.7717/peerj-cs.390.

D. Gutman et al., “Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC).” [Online]. Available: https://isic-archive.com/

M. M. Mijwil, “Skin cancer disease images classification using deep learning solutions,” Multimed Tools Appl, vol. 80, no. 17, pp. 26255–26271, Jul. 2021, doi: 10.1007/s11042-021-10952-7.

S. S. Chaturvedi, J. V. Tembhurne, and T. Diwan, “A multi-class skin Cancer classification using deep convolutional neural networks,” Multimed Tools Appl, vol. 79, no. 39–40, pp. 28477–28498, Oct. 2020, doi: 10.1007/s11042-020-09388-2.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf Sci (N Y), vol. 507, pp. 772–794, Jan. 2020, doi: 10.1016/j.ins.2019.06.064.

Published
2024-08-24
How to Cite
Kostidjan, O. D., Purwanto, Y., & Yuniarti, A. (2024). Skin Cancer Classification Using a Hybrid Pre-trained CNN with Random Forest Classifier. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(4), 506 - 515. https://doi.org/10.29207/resti.v8i4.5857
Section
Information Technology Articles