Quantum-Enhanced K-Medoids Clustering: Comparative Analysis of Stroke Medical Data

  • Ricardo Siahaan Institut Sains dan Teknologi TD Pardede
  • Swingly Purba Institut Sains dan Teknologi TD Pardede
  • Jeremia Siregar Institut Sains dan Teknologi TD Pardede
  • Marvin Frans Sakti Hutabarat Institut Sains dan Teknologi TD Pardede
  • Rasmi Sitohang Institut Sains dan Teknologi TD Pardede
Keywords: Clustering, Quantum Computing, Data Mining, K-Medoids, Superposition

Abstract

Stroke is a severe medical condition that occurs when the blood supply to parts of the brain is interrupted or reduced, resulting in brain tissue that lacks oxygen and nutrients. This causes brain cells to start to die in minutes. Early prevention reduces the risk of stroke. In this study, a quantum computing approach is used to improve the performance of the K-Medoids method. A comparative analysis of these methods was carried out with a focus on their performance, especially on the accuracy of the test results. The investigation was carried out using a data set of stroke patient medical records. The data set was tested using the classical and K-Medoids methods with a quantum computing approach utilizing Manhattan distance calculations. The findings of this research reveal improvements in the K-Medoids algorithm with Manhattan distance calculation influenced by the integration of a quantum computing framework. In particular, the simulation test results show an increase in accuracy from the classical K-Medoids method to the K-Medoids method with a quantum computing approach, from 52% to 64%. These results highlight that the performance of the K-Medoids method with a quantum computing approach is superior to that of the classical K-Medoids method.

Downloads

Download data is not yet available.

References

S. Solikhun, S. Efendi, M. Zarlis, and P. Sihombing, “Optimizing Quantum Perceptron Architecture Using Quantum Circuits for Data Classification,” ICIC Express Lett., vol. 16, no. 11, pp. 1139–1146, 2022. https://doi.org/10.24507/icicel.16.11.1139.

K. Hulliyah and S. Solikhun, “Q-Madaline: Madaline Based On Qubit,” Resti, vol. 7, no. 5, pp. 1003–1008, 2023. https://doi.org/10.29207/resti.v7i5.5080.

R. Buaton and S. Solikhun, “The Application of Numerical Measure Variations in K-Means Clustering for Grouping Data,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 23, no. 1, pp. 103–112, 2023. https://doi.org/10.30812/matrik.v23i1.3269.

T. Bezdan et al., “Hybrid fruit-fly optimization algorithm with k-means for text document clustering,” Mathematics, vol. 9, no. 16, pp. 1–19, 2021. https://doi.org/10.3390/math9161929.

N. Kumar Sahu, “DBSCAN & Hierachical Clustering Algorithm: Analysis Cyber Crime Data,” 2022. https://doi.org/2022/11.03.44.

L. Zahrotun, U. Linarti, B. H. T. Suandi As, H. Kurnia, and L. Y. Sabila, “Comparison of K-Medoids Method and Analytical Hierarchy Clustering on Students’ Data Grouping,” Int. J. Informatics Vis., vol. 7, no. 2, pp. 446–454, 2023. https://doi.org/10.30630/joiv.7.2.1204.

E. Schubert and P. J. Rousseeuw, Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms, vol. 101, no. 124020371. 2021.

https://doi.org/10.1016/j.is.2021.101804.

E. L. Cahapin, B. A. Malabag, C. S. Santiago, J. L. Reyes, G. S. Legaspi, and K. L. Adrales, “Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms,” Bull. Electr. Eng. Informatics, vol. 12, no. 6, pp. 3647–3656, 2023. https://doi.org/10.11591/eei.v12i6.4849.

S. A. Abbas, A. Aslam, A. U. Rehman, W. A. Abbasi, S. Arif, and S. Z. H. Kazmi, “K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir,” IEEE Access, vol. 8, pp. 151847–151855, 2020. https://doi.org/10.1109/ACCESS.2020.3014021.

M. Tiwari, R. Kang, D. Lee, S. Thrun, and C. Piech, “BanditPAM ++: Faster k -medoids Clustering,” no. NeurIPS, 2023.

R. K. Dinata, S. Retno, and N. Hasdyna, “Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm,” Rev. d’Intelligence Artif., vol. 35, no. 3, pp. 193–199, 2021. https://doi.org/10.18280/ria.350302.

C. Oktarina, K. A. Notodiputro, and I. Indahwati, “Comparison of K-Means Clustering Method and K-Medoids on Twitter Data,” Indones. J. Stat. Its Appl., vol. 4, no. 1, pp. 189–202, 2020.

https://doi.org/10.29244/ijsa.v4i1.599.

I. H. Rifa, H. Pratiwi, and R. Respatiwulan, “Clustering of Earthquake Risk in Indonesia Using K-Medoids and K-Means Algorithms,” Media Stat., vol. 13, no. 2, pp. 194–205, 2020. https://doi.org/10.14710/medstat.13.2.194-205.

E. Schubert and L. Lenssen, “Fast k-medoids Clustering in Rust and Python,” J. Open Source Softw., vol. 7, no. 75, p. 4183, 2022. https://doi.org/10.21105/joss.04183.

J. Ren, K. Hua, and Y. Cao, “Global Optimal K-Medoids Clustering of One Million Samples,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS, 2022. [16] J. Ren, K. Hua, and Y. Cao, "Applying the RFM Model with K-Means, K-Medoids, and DBSCAN Algorithms for Customer Segmentation in Transaction Data," in Advances in Neural Information Processing Systems (NeurIPS), vol. 35, no. NeurIPS, 2022.

M. Tiwari, M. J. Zhang, J. Mayclin, S. Thrun, C. Piech, and I. Shomorony, “BanditPAM: Almost linear time k-medoids clustering via multi-armed bandits,” Adv. Neural Inf. Process. Syst., vol. 2020-December, no. NeurIPS 2020, pp. 1–12, 2020.

R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 1, p. 32, 2020. https://doi.org/10.24843/lkjiti.2020.v11.i01.p04.

S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022. https://doi.org/10.31849/digitalzone.v13i1.9292.

J. Kuang, G. Xu, A. Jian, H. Jatnika, and H. Jamaludin, “Application of K-Medoids Cluster Result with Particle Swarm Optimization (PSO) in Toddler Measles Immunization Cases Application of K-Medoids Cluster Result with Particle Swarm Optimization (PSO) in Toddler Measles Immunization Cases,” pp. 2–10, 2021. https://doi.org/10.1088/1742-6596/1933/1/012036.

M. Faisal, E. M. Zamzami, and Sutarman, “Comparative Analysis of Inter-Centroid K-Means Performance using Euclidean Distance, Canberra Distance and Manhattan Distance,” J. Phys. Conf. Ser., vol. 1566, no. 1, 2020. https://doi.org/10.1088/1742-6596/1566/1/012112.

Published
2024-10-07
How to Cite
Siahaan, R., Purba, S., Siregar, J., Hutabarat, M. F. S., & Sitohang, R. (2024). Quantum-Enhanced K-Medoids Clustering: Comparative Analysis of Stroke Medical Data. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(5), 623 - 630. https://doi.org/10.29207/resti.v8i5.5814
Section
Information Technology Articles