An Analysis of Meteorological Data in Sumatra and Nearby using Agglomerative Clustering

  • Teny Handhayani Universitas Tarumanagara
  • Irvan Lewenusa Universitas Tarumanagara
Keywords: Agglomerative, Climate change, Clustering, Meteorology, Sumatra

Abstract

Sumatra is one of the biggest and the second most crowded islands in Indonesia. Sumatra is also a place of abundance of tropical flora and fauna. This paper aims to cluster the cities in Sumatra and nearby based on the meteorology data. It implements Agglomerative hierarchical clustering and uses a daily time series dataset from 17 cities from 1 January 2010 to 31 December 2023. The dataset contains variables minimum temperature, maximum temperature, average temperature, humidity, sunshine duration, and average wind speed. The preprocessing data was dedicated to managing the missing values and data aggregation to create single-form data. The single-form data contains cities and meteorological variables used as an input for the clustering algorithm, i.e. K-Means, Fuzzy C-Means, K-Medoid, intelligent K-KMeans, and Agglomerative clustering. The Agglomerative clustering outperforms other methods (i.e. K-Means, Fuzzy C-Means, K-Medoid, and intelligent K-KMeans) and produces Silhouette scores of 0.11. The clusters are then analyzed to find their unique pattern. The cut-off when the number cluster is two, Agglomerative hierarchical clustering gathers Aceh, Sabang, Pekanbaru, Padang, and Padang Lawas in Cluster 1. Other cities, i.e., Nagan Raya, Batam, Jambi, Bandar Lampung, Medan, Pangkalpinang, Palembang, Bengkulu, Belitung, Tapanuli, Deli Serdang, and Nias are in Cluster 2. The results can be briefly explained that the characteristic of Cluster 1 has a higher average temperature, lower humidity, and lower sunshine duration than cities in Cluster 2. However, Cluster 1 has a lower average minimum temperature than Cluster 2. The pairs of cities which have the most similarities are (Aceh, Sabang), (Pekanbaru, Padang Lawas), (Nagan Raya, Nias), (Jambi, Palembang), (Bengkulu, Tapanuli), and (Medan, Deli Serdang). The annual trend in several cities shows that there exists an increasing trend in minimum temperature, rising sunshine duration, and decreasing wind speed. These are signs of climate change that need a proper handling.

Downloads

Download data is not yet available.

References

South Sumatra Province Central Statistics Agency, “Population by Province (Thousand People), 2020-2022,” https://sumsel.bps.go.id/indicator/12/573/1/jumlah-penduduk-menurut-provinsi.html.

I. F. RAMBE, R. Rambey, and S. SIREGAR, “Species diversity, abundance, and wildlife conservation status in Batang Gadis National Park, North Sumatra, Indonesia,” Biodiversitas, vol. 22, no. 11, Nov. 2021, doi: 10.13057/biodiv/d221157.

H. HERNAWATI, E. A. ZUHUD, L. B. PRASETYO, and R. SOEKMADI, “Synopsis of Sumatran Nepenthes (Indonesia),” Biodiversitas, vol. 23, no. 8, Aug. 2022, doi: 10.13057/biodiv/d230848.

D. Novita, T. Rinanda, M. I. Riyadh, N. Rajiah, and A. Fitri, “Mapping agricultural superior commodities area in North Sumatra Province,” IOP Conf Ser Earth Environ Sci, vol. 977, no. 1, p. 012054, Jun. 2022, doi: 10.1088/1755-1315/977/1/012054.

K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, “A review of the global climate change impacts, adaptation, and sustainable mitigation measures,” Environmental Science and Pollution Research, vol. 29, no. 28, pp. 42539–42559, Jun. 2022, doi: 10.1007/s11356-022-19718-6.

R. J. Rocque et al., “Health effects of climate change: an overview of systematic reviews,” BMJ Open, vol. 11, no. 6, p. e046333, Jun. 2021, doi: 10.1136/bmjopen-2020-046333.

T. R. Segal and L. C. Giudice, “Systematic review of climate change effects on reproductive health,” Fertil Steril, vol. 118, no. 2, pp. 215–223, Aug. 2022, doi: 10.1016/j.fertnstert.2022.06.005.

B. Haryanto, F. Lestari, and T. Nurlambang, “Extreme Events, Disasters, and Health Impacts in Indonesia,” in Extreme Weather Events and Human Health, Cham: Springer International Publishing, 2020, pp. 227–245. doi: 10.1007/978-3-030-23773-8_16.

A. J. Firmansyah, E. Nurjani, and A. B. Sekaranom, “Effects of the El Niño-Southern Oscillation (ENSO) on rainfall anomalies in Central Java, Indonesia,” Arabian Journal of Geosciences, vol. 15, no. 24, p. 1746, Dec. 2022, doi: 10.1007/s12517-022-11016-2.

N. H. Darlan, B. D. A. Nugroho, S. S. Arif, and P. Sudira, “Spatial and temporal change of rainfall pattern in east coast of North Sumatera,” IOP Conf Ser Earth Environ Sci, vol. 250, p. 012111, Apr. 2019, doi: 10.1088/1755-1315/250/1/012111.

H. Purnomo et al., “Public and private sector zero-deforestation commitments and their impacts: A case study from South Sumatra Province, Indonesia,” Land use policy, vol. 134, p. 106818, Nov. 2023, doi: 10.1016/j.landusepol.2023.106818.

ASEAN, “ASEAN State of Climate Change Report,” https://asean.org/wp-content/uploads/2021/10/ASCCR-e-publication-Correction_8-June.pdf.

M. S. Rahman et al., “Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia,” Sustainability, vol. 14, no. 6, p. 3383, Mar. 2022, doi: 10.3390/su14063383.

L. A. Pampuch, R. G. Negri, P. C. Loikith, and C. A. Bortolozo, “A Review on Clustering Methods for Climatology Analysis and Its Application over South America,” International Journal of Geosciences, vol. 14, no. 09, pp. 877–894, 2023, doi: 10.4236/ijg.2023.149047.

S. Jahn and E. Hertig, “Using Clustering, Statistical Modeling, and Climate Change Projections to Analyze Recent and Future Region‐Specific Compound Ozone and Temperature Burden Over Europe,” Geohealth, vol. 6, no. 4, Apr. 2022, doi: 10.1029/2021GH000561.

Z. Sa’adi, S. Shahid, and M. S. Shiru, “Defining climate zone of Borneo based on cluster analysis,” Theor Appl Climatol, vol. 145, no. 3–4, pp. 1467–1484, Aug. 2021, doi: 10.1007/s00704-021-03701-1.

T. Handhayani and Z. Rusdi, “K-Means Using Dynamic Time Warping For Clustering Cities in Java Island According to Meteorological Conditions,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICIC60109.2023.10381899.

K. F. Silveira Marinho et al., “Climate Profiles in Brazilian Microregions,” Atmosphere (Basel), vol. 11, no. 11, p. 1217, Nov. 2020, doi: 10.3390/atmos11111217.

A. de Souza et al., “Climate Regionalization in Mato Grosso do Sul: a Combination of Hierarchical and Non-hierarchical Clustering Analyses Based on Precipitation and Temperature,” Brazilian Archives of Biology and Technology, vol. 65, 2022, doi: 10.1590/1678-4324-2022210331.

B. Guerreiro Miranda, R. Galante Negri, and L. Albertani Pampuch, “Using clustering algorithms and GPM data to identify spatial precipitation patterns over southeastern Brazil,” Atmósfera, vol. 37, pp. 365–381, Mar. 2023, doi: 10.20937/ATM.53155.

A. Crespi, K. Renner, M. Zebisch, I. Schauser, N. Leps, and A. Walter, “Analysing spatial patterns of climate change: Climate clusters, hotspots and analogues to support climate risk assessment and communication in Germany,” Clim Serv, vol. 30, p. 100373, Apr. 2023, doi: 10.1016/j.cliser.2023.100373.

F. Liu and Y. Masago, “An analysis of the spatial heterogeneity of future climate change impacts in support of cross-sectoral adaptation strategies in Japan,” Clim Risk Manag, vol. 41, p. 100528, 2023, doi: 10.1016/j.crm.2023.100528.

BAPPENAS, Pedoman Teknik Penyusunan Rencana Aksi Tujuan Pembangunan Berkelanjutan Edisi II. Badan Perencanaan Pembangunan Nasional, 2020.

S. A. Abbas, A. Aslam, A. U. Rehman, W. A. Abbasi, S. Arif, and S. Z. H. Kazmi, “K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir,” IEEE Access, vol. 8, pp. 151847–151855, 2020, doi: 10.1109/ACCESS.2020.3014021.

T. Handhayani and I. Lewenusa, “An Intelligent Clustering Approach For Analyzing A Multivariate Time Series Dataset, Case Study COVID-19 Outbreak in Indonesia,” in 2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA), IEEE, Oct. 2023, pp. 1–6. doi: 10.1109/TSSA59948.2023.10367007.

S. E. Hashemi, F. Gholian-Jouybari, and M. Hajiaghaei-Keshteli, “A fuzzy C-means algorithm for optimizing data clustering,” Expert Syst Appl, vol. 227, p. 120377, Oct. 2023, doi: 10.1016/j.eswa.2023.120377.

T. Li, A. Rezaeipanah, and E. M. Tag El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3828–3842, Jun. 2022, doi: 10.1016/j.jksuci.2022.04.010.

A. K. Singh, S. Mittal, P. Malhotra, and Y. V. Srivastava, “Clustering Evaluation by Davies-Bouldin Index (DBI) in Cereal data using K-Means,” in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Mar. 2020, pp. 306–310. doi: 10.1109/ICCMC48092.2020.ICCMC-00057.

BMKG, “BMKG Database Center Online Data,” https://dataonline.bmkg.go.id/home?language=english.

F. S. Arsad et al., “The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review,” Int J Environ Res Public Health, vol. 19, no. 23, p. 16356, Dec. 2022, doi: 10.3390/ijerph192316356.

M. H. Saputra and H. S. Lee, “Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia,” Sustainability, vol. 13, no. 2, p. 462, Jan. 2021, doi: 10.3390/su13020462.

M. Habib-ur-Rahman et al., “Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia,” Front Plant Sci, vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.925548.

H. Irwandi, M. S. Rosid, and T. Mart, “Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction,” Sci Rep, vol. 13, no. 1, p. 2542, Feb. 2023, doi: 10.1038/s41598-023-29592-y.

T. Kara and A. D. Şahin, “Implications of Climate Change on Wind Energy Potential,” Sustainability, vol. 15, no. 20, p. 14822, Oct. 2023, doi: 10.3390/su152014822.

T. Handhayani, “An integrated analysis of air pollution and meteorological conditions in Jakarta,” Sci Rep, vol. 13, no. 1, p. 5798, Apr. 2023, doi: 10.1038/s41598-023-32817-9.

G. Andrian, D. Arisandi, and T. Handhayani, “Clustering Meteorological Data in The Eastern Indonesia Region Using K-Means and Fuzzy C-Means,” INTI Nusa Mandiri, vol. 18, no. 2, pp. 100–106, Feb. 2024, doi: 10.33480/inti.v18i2.5039.

A. Martinez and G. Iglesias, “Global wind energy resources decline under climate change,” Energy, vol. 288, p. 129765, Feb. 2024, doi: 10.1016/j.energy.2023.129765.

S. Yue, Y. Yan, S. Zhang, and J. Yang, “Changes in Climate Factors and Their Impacts on Wind Erosion Climatic Erosivity in Farming-pastoral Zone of Northern China,” Chin Geogr Sci, vol. 32, no. 4, pp. 665–675, Aug. 2022, doi: 10.1007/s11769-022-1292-2.

Published
2024-04-21
How to Cite
Handhayani, T., & Lewenusa, I. (2024). An Analysis of Meteorological Data in Sumatra and Nearby using Agglomerative Clustering. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(2), 234 - 241. https://doi.org/10.29207/resti.v8i2.5663
Section
Information Technology Articles