Convolutional Neural Networks for Classification Motives and the Effect of Image Dimensions

  • Siti Aisyah STMIK IKMI Cirebon
  • Rini Astuti STMIK IKMI Cirebon
  • Fadhil M Basysyar STMIK IKMI Cirebon
  • Odi Nurdiawan STMIK IKMI Cirebon
  • Irfan Ali STMIK IKMI Cirebon
Keywords: image processing, indonesian batik motifs, convolutional neural network

Abstract

Although Indonesian batik patterns vary by location, they usually depict local customs and cultures. Each batik has a unique quality and, to correctly identify the batik designs, you need to understand the design patterns. However, many people struggle to identify and categorize these kinds of motivation because they don't have the requisite knowledge, understanding, or access to sufficient information. This study used photo data to classify batik patterns into 15 different groups. Batik Kawung, Megamendung, Lasem, Pole, Machete, Gills, Nutmeg, Karaswasih, Cendrawasih, Geblek Renteng, Bali, Betawi, and Dayak are all included in this category. 1,350 images were used in the research. Google supports the collection of data. To provide the highest level of precision and to evaluate how image dimensions affect the classification of batik designs, this study employs convolutional neural networks (CNNs). The results of this study show that Multi-Layer Perceptron (MLP) is a well-liked deep learning method for data classification, especially in domains where picture classification is involved. The size of the images utilized affects the accuracy of computational neural network (CNN) algorithms. The results showed that the test using training data comparisons of 60%, 30% and 10% resulted in a 01.89% loss of 1.18% and a 100% improvement in accuracy.

Downloads

Download data is not yet available.

References

Ayu Ratna Juwita, Tohirn Al Mudzakir, Adi Rizky Pratama, Purwani Husodo, and Rahmat Sulaiman, “Identifikasi Citra Batik Dengan Metode Convolutional Neural Network,” Buana Ilmu, vol. 6, no. 1, pp. 192–208, 2021, doi: 10.36805/bi.v6i1.1996.

S. F. Tumewu, D. H. Setiabud, and I. Sugiarto, “Klasifikasi Motif Batik menggunakan Metode Deep Convolutional Neural Network dengan Data Augmentation,” J. Infra, vol. 8, no. 2, pp. 189–194, 2020.

T. A. Bowo, H. Syaputra, and M. Akbar, “Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Motif Citra Batik Solo,” J. Softw. Eng. Ampera, vol. 1, no. 2, pp. 82–96, 2020, doi: 10.51519/journalsea.v1i2.47.

P. R. Togatorop, Y. Pratama, A. M. Sianturi, M. S. Pasaribu, and P. S. Sinaga, “Image preprocessing and hyperparameter optimization on pre-trained model MobileNetV2 in white blood cell image classification,” IAES Int. J. Artif. Intell., vol. 12, no. 3, pp. 1210–1223, 2023, doi: 10.11591/ijai.v12.i3.pp1210-1223.

R. Mawan, “Klasifikasi motif batik menggunakan Convolutional Neural Network,” Jnanaloka, pp. 45–50, 2020, doi: 10.36802/jnanaloka.2020.v1-no1-45-50.

W. Hidayatillah and M. Jakfar, “Klasifikasi Batik di Jawa Timur Berdasarkan Analisis Dimensi Fraktal Dengan Menggunakan Metode Box Counting,” MATHunesa J. Ilm. Mat., vol. 10, no. 2, pp. 349–358, 2022, doi: 10.26740/mathunesa.v10n2.p349-358.

H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),” J. Ilmu Komput., vol. 9, no. 1, pp. 7–10, 2020, doi: 10.33060/jik/2020/vol9.iss1.144.

T. Bariyah, M. Arif Rasyidi, and Ngatini, “Convolutional Neural Network Untuk Metode Klasifikasi Multi-Label Pada Motif Batik Convolutional Neural Network for Multi-Label Batik Pattern Classification Method,” Februari, vol. 20, no. 1, pp. 155–165, 2021.

M. A. Masril, Yuhandri, and Jufriadif Na’am, “Analisis Perbandingan Perbaikan Kualitas Citra Pada Motif Batik Dengan Konsep Deteksi Tepi Robert, Sobel, Canny Menggunakan Metode Morfologi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 1, pp. 36–41, 2019, doi: 10.29207/resti.v3i1.821.

R. F. Alya, M. Wibowo, and P. Paradise, “Classification of Batik Motif Using Transfer Learning on Convolutional Neural Network (Cnn),” J. Tek. Inform., vol. 4, no. 1, pp. 161–170, 2023, doi: 10.52436/1.jutif.2023.4.1.564.

E. Sentosa, D. I. Mulyana, A. F. Cahyana, and N. G. Pramuditasari, “Implementasi Image Classification Pada Batik Motif Bali Dengan Data Augmentation dan Convolutional Neural Network,” J. Pendidik. Tambusai, vol. 6, no. 1, pp. 1451–1463, 2022.

V. Ayumi, I. Nurhaida, and H. Noprisson, “Implementation of Convolutional Neural Networks for Batik Image Dataset,” Int. J. Comput. Sci. Appl. Math., vol. 8, no. 1, p. 5, 2022, doi: 10.12962/j24775401.v8i1.5053.

A. P. A. Masa and H. Hamdani, “Klasifikasi Motif Citra Batik Menggunakan Convolutional Neural Network Berdasarkan K-means Clustering,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1292, 2021, doi: 10.30865/mib.v5i4.3246.

A. E. Putra, M. F. Naufal, and V. R. Prasetyo, “Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning,” J. Edukasi dan Penelit. Inform., vol. 9, no. 1, p. 12, 2023, doi: 10.26418/jp.v9i1.58186.

R. A. Pratiwi, S. Nurmaini, D. P. Rini, M. N. Rachmatullah, and A. Darmawahyuni, “Deep ensemble learning for skin lesions classification with convolutional neural network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, pp. 563–570, 2021, doi: 10.11591/ijai.v10.i3.pp563-570.

Bella Dwi Mardiana, Wahyu Budi Utomo, Ulfah Nur Oktaviana, Galih Wasis Wicaksono, and Agus Eko Minarno, “Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 20–26, 2023, doi: 10.29207/resti.v7i1.4550.

F. Chan Uswatun, Angkin, “Implementasi Data Augmentation Random Erasing dan GridMask pada CNN untuk Klasifikasi Batik,” J. Sisfoteknika, vol. 13, no. 1, pp. 16–28, 2023.

Y. A. Putri, Y. Azhar, and A. E. Minarno, “Klasifikasi Jenis Batik Menggunakan Algoritma Convolutional Neural Network,” vol. 3, no. 2, pp. 199–206, 2021.

I. A. and O. L. N., “Digital Image Processing for Detecting and Classifying Plant Diseases,” Circ. Comput. Sci., vol. 2, no. 11, pp. 1–7, 2017, doi: 10.22632/ccs-2017-252-66.

M. Nada, “Kegunaan Layar Pooling Pada Penerapan Deep Learning menggunakan Convolutional Neural Network,” Https://Medium.Com/. 2019. [Online]. Available: https://medium.com/@mukhlishatunnada02/kegunaan-layar-pooling-pada-penerapan-deep-learning-menggunakan-convolutional-neural-network-140146078f28

SuperDataScience Team, “Convolutional Neural Networks (CNN): Step 4 - Full Connection - Blogs - SuperDataScience | Machine Learning | AI | Data Science Career | Analytics | Success,” SuperDataScience. 2018. [Online]. Available: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection

Published
2024-02-22
How to Cite
Siti Aisyah, Rini Astuti, Fadhil M Basysyar, Odi Nurdiawan, & Irfan Ali. (2024). Convolutional Neural Networks for Classification Motives and the Effect of Image Dimensions. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(1), 181 - 188. https://doi.org/10.29207/resti.v8i1.5623
Section
Information Systems Engineering Articles