The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm

  • Mohammad Yazdi Pusadan Universitas Tadulako
  • Indah Safitri Universitas Tadulako
  • Wirdayanti Universitas Tadulako
Keywords: oil palm, maturity classification, HSV, k-NN, confusion matrix

Abstract

The oil palm is one of the monocot oil-producing plants in Indonesia. Sorting errors in oil palm fruit are caused by a sorter error when distinguishing the color of ripe and immature oil palm fruit. In addition to inefficient time, the area of oil palm plantations is also a factor that causes the sorter to make mistakes in sorting. This study aims to produce a system that can classify the maturity of oil palms based on feature extraction of characteristics of the hue, saturation and value (HSV) color features. The HSV method is used to produce color characteristics from the image of the oil palm fruit. Classification of oil palm fruit maturity is classified using the K-Nearest Neighbor (KNN) algorithm with a dataset of 400 oil palm fruit image data with a data sharing ratio of 70% training data and 30% test data. 280 image data were used as training data, divided into 140 image data of ripe oil palm fruit, 140 image data of immature oil palm fruit and 120 image data of oil palm used as test data which is divided into 60 image data of ripe oil palm and 45 unripe palm oil. Based on the result of tests that have been carried out using a confusion matrix with varied k values, namely, 5 and 7, the average precision is 94.16%.

 

Downloads

Download data is not yet available.

References

K. Azima, K. Munadi, F. Arnia, and M. Oktiana, “Identifikasi Tingkat Kematangan Kelapa Sawit Berbasis Pencitraan Termal,” J. Rekayasa Elektr., vol. 15, no. 1, 2019, doi: 10.17529/jre.v15i1.12963.

F. Liantoni and F. N. Annisa, “Fuzzy K-Nearest Neighbor Pada Klasifikasi Kematangan Cabai Berdasarkan Fitur Hsv Citra,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 3, no. 2, pp. 101–108, 2018, doi: 10.29100/jipi.v3i2.851.

A. O. Salau, S. Jain, and J. N. Eneh, “A review of various image fusion types and transforms,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp. 1515–1522, 2021, doi: 10.11591/ijeecs.v24.i3.pp1515-1522.

N. S. B. Mat Said, H. Madzin, S. K. Ali, and N. S. Beng, “Comparison of colour-based feature extraction methods in banana leaf diseases classification using SVM and K-NN,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp. 1523–1533, 2021, doi: 10.11591/ijeecs.v24.i3.pp1523-1533.

I. Transformation, W. Lung, I. Thresholding, and S. Method, “Jurnal resti,” vol. 5, no. 158, pp. 278–285, 2023.

I. Ilhamsyah, A. Y. Rahman, and I. Istiadi, “Klasifikasi Kualitas Biji Kopi Menggunakan MultilayerPerceptron Berbasis Fitur Warna LCH,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1008–1017, 2021, doi: 10.29207/resti.v5i6.3438.

C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.

Mohammad Yazdi Pusadan, Syahrullah, Merry, and Ahmad Imam Abdullah, “k-Nearest Neighbor and Feature Extraction on Detection of Pest and Diseases of Cocoa,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 3, pp. 471–480, 2022, doi: 10.29207/resti.v6i3.4064.

S. Subudhiray, H. K. Palo, and N. Das, “K-nearest neighbor based facial emotion recognition using effective features,” IAES Int. J. Artif. Intell., vol. 12, no. 1, p. 57, 2023, doi: 10.11591/ijai.v12.i1.pp57-65.

A. Bokhare and P. Jha, “Machine learning models applied in analyzing breast cancer classification accuracy,” IAES Int. J. Artif. Intell., vol. 12, no. 3, pp. 1370–1377, 2023, doi: 10.11591/ijai.v12.i3.pp1370-1377.

M. H. Hanafi, N. Fadillah, and A. Insan, “Optimasi Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna,” It J. Res. Dev., vol. 4, no. 1, pp. 10–18, 2019, doi: 10.25299/itjrd.2019.vol4(1).2477.

Z. D. Lestari, N. Nafi’iyah, and P. H. Susilo, “Sistem Klasifikasi Jenis Pisang Berdasarkan Ciri Warna HSV Menggunakan Metode K-NN,” Semin. Nas. Teknol. Inf. dan Komun., pp. 11–15, 2019.

S. Restiana and A. S. Rini, “Komunikasi Fisika Indonesia PEROVSKITE MENGGUNAKAN VESTA,” vol. 15, no. 01, pp. 46–50, 2018.

D. Yulianto, R. N. Whidhiasih, and M. Maimunah, “Klasifikasi Tahap Kematangan Pisang Ambon Berdasarkan Warna Menggunakan Naive Bayes,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 5, no. 2, pp. 60–67, 2018, doi: 10.33558/piksel.v5i2.268.

N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan,” Sisfokom, vol. 08, no. 1, pp. 74–78, 2019.

M. Lutfi, “Implementasi Metode K-Nearest Neighbor dan Bagging Untuk Klasifikasi Mutu Produksi Jagung,” Agromix, vol. 10, no. 2, pp. 130–137, 2019, doi: 10.35891/agx.v10i2.1636.

D. Syahid, J. Jumadi, and D. Nursantika, “Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV),” J. Online Inform., vol. 1, no. 1, p. 20, 2016, doi: 10.15575/join.v1i1.6.

E. Budianita, J. Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web,” J. Sains dan Teknol. Ind., vol. 12, no. Vol 12, No 2 (2015): Juni 2015, pp. 242–247, 2015, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1005

F. R. Lestari, J. Y. Sari, Sutardi, I. Purwanti, and N. Purnama, “Deteksi Penyakit Tanaman Jeruk Siam Berdasarkan Citra Daun Menggunakan Segmentasi Warna RGB-HSV,” Teknol. Terap. Berbas. Kearifan Lokal, no. December, pp. 276–283, 2018.

S. Saifullah, D. B. Prasetyo, Indahyani, R. Dreżewski, and F. A. Dwiyanto, “Palm Oil Maturity Classification Using K-Nearest Neighbors Based on RGB and L*a*b Color Extraction,” Procedia Comput. Sci., 2023, doi: 10.1016/j.procs.2023.10.294.

T. H. Ong, M. H. Hamzah, and H. Che Man, “Optimization of palm oil extraction from decanter cake using soxhlet extraction and effects of microwaves pre-treatment on extraction yield and physicochemical properties of palm oil,” Food Res., vol. 5, pp. 25–32, 2021, doi: 10.26656/fr.2017.5(S1).008.

M. S. M. Alfatni, A. R. Mohamed Shariff, O. M. Ben Saaed, A. M. Albhbah, and A. Mustapha, “Colour Feature Extraction Techniques for Real Time System of Oil Palm Fresh Fruit Bunch Maturity Grading,” IOP Conf. Ser. Earth Environ. Sci., vol. 540, no. 1, 2020, doi: 10.1088/1755-1315/540/1/012092.

Hanafi, A. Pranolo, and Y. Mao, “Cae-covidx: Automatic covid-19 disease detection based on x-ray images using enhanced deep convolutional and autoencoder,” International Journal of Advances in Intelligent Informatics, vol. 7, no. 1. pp. 49–62, 2021. doi: 10.26555/ijain.v7i1.577.

“CF_Multidisciplinary classification for Indonesian scientific articles abstract using pre-trained BERT model.pdf.”

A. Kumar and S. P. Panda, “Performance analysis of neuro linguistic programming techniques using confusion matrix,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 3, pp. 1696–1702, 2022, doi: 10.11591/ijeecs.v25.i3.pp1696-1702.

Published
2023-12-28
How to Cite
Mohammad Yazdi Pusadan, Indah Safitri, & Wirdayanti. (2023). The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(6), 1448 - 1456. https://doi.org/10.29207/resti.v7i6.5558
Section
Information Technology Articles