Improved Backpropagation Using Genetic Algorithm for Prediction of Anomalies and Data Unavailability
Abstract
Anomalies and data unavailability are significant challenges in conducting surveys, affecting the validity, reliability, and accuracy of analysis results. Various methods address these issues, including the Backpropagation Neural Network (BPNN) for data prediction. However, BPNN can get stuck in local minima, resulting in suboptimal error values. To enhance BPNN's effectiveness, this study integrates Genetic Algorithm (GA) optimization, forming the BPGA method. GA is effective in finding optimal parameter solutions and improving prediction accuracy. This research uses data from the 2022 National Socio-Economic Survey (Susenas) in Solok District to compare the prediction performance of BPNN, Multiple Imputation (MI), and BPGA methods. The comparison involves training the models with a subset of the data and testing their predictions on a separate subset. The BPGA method demonstrates superior accuracy, with the lowest mean squared error (MSE) and highest average accuracy, outperforming both BPNN and MI methods.
Downloads
References
B. Felderer, A. Kirchner, and F. Kreuter, “The Effect of Survey Mode on Data Quality: Disentangling Nonresponse and Measurement Error Bias,” J. Off. Stat., vol. 35, pp. 93–115, Mar. 2019, doi: 10.2478/jos-2019-0005.
P. Kasprzak, L. Mitchell, O. Kravchuk, and A. A. 田文捷 Timmins, “Six Years of Shiny in Research - Collaborative Development of Web Tools in R,” ArXiv, vol. abs/2101.10948, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:231709443
N. Kalpourtzi, J. R. Carpenter, and G. Touloumi, “Handling Missing Values in Surveys With Complex Study Design: A Simulation Study,” J. Surv. Stat. Methodol., vol. 12, no. 1, pp. 105–129, Feb. 2024, doi: 10.1093/jssam/smac039.
J. R. Carpenter and M. Smuk, “Missing data: A statistical framework for practice,” Biometrical J., vol. 63, no. 5, pp. 915–947, Jun. 2021, doi: https://doi.org/10.1002/bimj.202000196.
A. Kharitonov, A. Nahhas, M. Pohl, and K. Turowski, “Comparative analysis of machine learning models for anomaly detection in manufacturing,” Procedia Comput. Sci., vol. 200, pp. 1288–1297, 2022, doi: https://doi.org/10.1016/j.procs.2022.01.330.
G. Vishwakarma, C. Paul, and A. Elsawah, “An algorithm for outlier detection in a time series model using backpropagation neural network,” J. King Saud Univ. - Sci., vol. 32, pp. 3328–3336, Dec. 2020, doi: 10.1016/j.jksus.2020.09.018.
C. Sekhar and P. Meghana, “A Study on Backpropagation in Artificial Neural Networks,” Asia-Pacific J. Neural Networks Its Appl., vol. 4, pp. 21–28, Aug. 2020, doi: 10.21742/AJNNIA.2020.4.1.03.
Y. Chauvin and D. E. Rumelhart, Eds., Backpropagation: Theory, architectures, and applications. in Developments in connectionist theory. Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc, 1995.
N. Chen, C. Xiong, W. Du, C. Wang, X. Lin, and Z. Chen, “An Improved Genetic Algorithm Coupling a Back-Propagation Neural Network Model (IGA-BPNN) for Water-Level Predictions,” Water, vol. 11, no. 9. 2019. doi: 10.3390/w11091795.
Y. Lesnussa, C. Mustamu, F. Lembang, and M. Talakua, “Application of Backpropagation Neural Networks In Predicting Rainfall Data In Ambon City,” Int. J. Artif. Intell. Res., vol. 2, Aug. 2018, doi: 10.29099/ijair.v2i2.59.
D. Mustikaningrum and R. Wardoyo, “Implementation of Genetic Algorithms and Momentum Backpropagation in Classification of Subtype Cells Acute Myeloid Leukimia,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 14, p. 189, Apr. 2020, doi: 10.22146/ijccs.51086.
J. Tarigan, Nadia, R. Diedan, and Y. Suryana, “Plate Recognition Using Backpropagation Neural Network and Genetic Algorithm,” Procedia Comput. Sci., vol. 116, pp. 365–372, 2017, doi: https://doi.org/10.1016/j.procs.2017.10.068.
J. Zhang and S. Qu, “Optimization of Backpropagation Neural Network under the Adaptive Genetic Algorithm,” Complex., vol. 2021, pp. 1718234:1-1718234:9, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:236150412
Z. Zangenehmadar, O. Moselhi, and S. Golnaraghi, “Optimized planning of repair works for pipelines in water distribution networks using genetic algorithm,” Eng. Reports, vol. 2, Jun. 2020, doi: 10.1002/eng2.12179.
D. S. R. N. P. R. Suryanita, “Perbandingan Algoritma Genetika dan Backpropagation pada Aplikasi Prediksi Penyakit Autoimun,” Khazanah Inform., no. Vol. 5 No. 1 June 2019, pp. 21–27, 2019, [Online]. Available: https://journals.ums.ac.id/index.php/khif/article/view/7173/4605
Y. Hu, A. Sharma, G. Dhiman, and D. M. Shabaz, “The Identification Nanoparticle Sensor Using Back Propagation Neural Network Optimized by Genetic Algorithm,” J. Sensors, vol. 2021, pp. 1–12, Nov. 2021, doi: 10.1155/2021/7548329.
J. S. Sebayang and B. Yuniarto, “Perbandingan Model Estimasi Artificial Neural Network Optimasi Genetic Algorithm dan Regresi Linier Berganda,” Media Stat. Vol 10, No 1 Media Stat. - 10.14710/medstat.10.1.13-23, Jun. 2017, [Online]. Available: https://ejournal.undip.ac.id/index.php/media_statistika/article/view/15598
BPS, “Statistik Kesejahteraan Rakyat,” Jakarta, 2022.
A. Eesa and W. Arabo, “A Normalization Methods for Backpropagation: A Comparative Study,” Sci. J. Univ. Zakho, vol. 5, p. 319, Dec. 2017, doi: 10.25271/2017.5.4.381.
I. Purba et al., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” J. Phys. Conf. Ser., vol. 1255, p. 12014, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012014.
J. A. C. Sterne et al., “Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls,” BMJ, vol. 338, 2009, doi: 10.1136/bmj.b2393.
H. Lafta, Z. Hasan, and N. Ayoob, “Classification of medical datasets using back propagation neural network powered by genetic-based features elector,” Int. J. Electr. Comput. Eng., vol. 9, p. 1379, Apr. 2019, doi: 10.11591/ijece.v9i2.pp1379-1384.
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;