Analysis and Development of Eight Deep Learning Architectures for the Classification of Mushrooms

Keywords: mushroom, deep learning, modified mobilenet, classification

Abstract

One food item that is easy to find in nature is the mushroom. In terms of form and characteristics, mushrooms are similar. Arranging mushrooms into groups so that poisonous and non-poisonous ones can be separated is important. Real-time analysis of mushrooms is still not used very often. Previous studies focused primarily on performance and accuracy, ignoring architectural computing and a significant amount of data preprocessing. The data set used is more laboratory-conditioned. This will impede the process of widespread implementation. The study suggests changes to eight current architectures: Modified DenseNet201, DenseNet121, VGG16, VGG19, ResNet50, InceptionNetV3, MobileNet, and EfficientNet B1. The development of this architecture took place within the areas of classification and hyperparameter learning. In contrast to the other eight architectures, the MobileNet architecture exhibits the lowest computational performance and highest accuracy, according to the comparison results. When the confusion matrix is used for evaluation, an accuracy of 82.7% is achieved. Modified MobileNet has the best speed because it keeps a lower computation architecture and cuts down on unnecessary preprocessing. This means that many people can use smartphones with more realistic data conditions to make it work.

Downloads

Download data is not yet available.

References

E. Iedfitra Haksoro and A. Setiawan, “Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,” vol. 5, no. 2, pp. 81–91, 2021.

M. R. Al Aziz, M. T. Furqon, and L. Muflikhah, “Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining,” vol. 6, no. 8, pp. 3948–3955, 2022, [Online]. Available: http://j-ptiik.ub.ac.id.

A. D. Setyadi and F. A. Sutanto, “Klasifikasi ras manusia menggunakan metode convolutional neural network berbasis telegram bot,” vol. 2, pp. 1–8.

Q. Liu, M. Fang, Y. Li, and M. Gao, “Deep learning based research on the quality classification of shiitake mushrooms,” Lwt, vol. 168, no. June, p. 113902, 2022, doi: 10.1016/j.lwt.2022.113902.

A. Garg, “Image classification using Resnet-50 deep learning model,” Anal. Vidhya, pp. 1–7, 2022, [Online]. Available: www.analyticssteps.com.

Faiz Nashrullah, Suryo Adhi Wibowo, and Gelar Budiman, “The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification,” J. Comput. Electron. Telecommun., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.52435/complete.v1i1.51.

M. C. Wujaya and L. W. Santoso, “Klasifikasi Pakaian Berdasarkan Gambar Menggunakan Metode YOLOv3 dan CNN,” J. INFA, vol. 9, no. 1, pp. 2–7, 2021.

M. Fadlurrahman, “Klasifikasi Covid-19 Menggunakan Algoritma CNN,” vol. 5, no. 2, pp. 699–708, 2021.

Y. N. Yenusi, S. Trihandaru, and A. Setiawan, “Perbandingan Model Convolutional Neural Network pada Klasifikasi Wajah Orang Papua dan Etnis Lainnya,” vol. 12, no. 1, pp. 261–268, 2023.

N. D. Miranda, L. Novamizanti, S. Rizal, F. T. Elektro, and U. Telkom, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50 Classification of Fingerprint Pattern Using Convolutional Neural Network in Clahe Image,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020.

A. B. Sinuhaji, A. G. Putrada, and H. H. Nuha, “Klasifikasi Gambar dari Prototipe Camera Trap Menggunakan Model ResNet-50 untuk Mendeteksi Satwa Dilindungi,” e-Proceeding Eng., vol. 8, no. 5, pp. 10544–10555, 2021.

Z. Niswati, R. Hardatin, M. N. Muslimah, and S. N. Hasanah, “Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear,” Fakt. Exacta, vol. 14, no. 3, p. 160, 2021, doi: 10.30998/faktorexacta.v14i3.10010.

S. Suprihanto, I. Awaludin, M. Fadhil, and M. A. Z. Zulfikor, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” J. Inform., vol. 9, no. 2, pp. 116–122, 2022, doi: 10.31294/inf.v9i1.13049.

K. Citra, P. Daun, and T. Padi, “Klasifikasi Citra Penyakit Daun Tanaman Padi Menggunakan CNN dengan Arsitektur VGG-19,” J. Sains dan Inform., vol. 9, no. 1, pp. 37–45, 2023, doi: 10.22216/jsi.v9i1.2175.

M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 4, pp. 3609–3620, 2023, doi: 10.1007/s12652-021-03488-z.

S. H. Wang and Y. D. Zhang, “DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification,” ACM Trans. Multimed. Comput. Commun. Appl., vol. 16, no. 2s, 2020, doi: 10.1145/3341095.

M. K. Bohmrah and H. Kaur, “Classification of Covid-19 patients using efficient fine-tuned deep learning DenseNet model,” Glob. Transitions Proc., vol. 2, no. 2, pp. 476–483, 2021, doi: 10.1016/j.gltp.2021.08.003.

N. Using and G. Wolf, “IGWO-IVNet3 : DL-Based Automatic Diagnosis of Lung,” 2022.

L. T. Duong, P. T. Nguyen, C. Di Sipio, and D. Di Ruscio, “Automated fruit recognition using EfficientNet and MixNet,” Comput. Electron. Agric., vol. 171, no. January, p. 105326, 2020, doi: 10.1016/j.compag.2020.105326.

Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecol. Inform., vol. 61, p. 101182, 2021, doi: 10.1016/j.ecoinf.2020.101182.

L. D. Huynh and N. Boutry, “A U-Net++ with pre-trained efficientnet backbone for segmentation of diseases and artifacts in endoscopy images and videos,” CEUR Workshop Proc., vol. 2595, pp. 13–17, 2020.

N. Zahan, M. Z. Hasan, M. A. Malek, and S. S. Reya, “A Deep Learning-Based Approach for Edible, Inedible and Poisonous Mushroom Classification,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 440–444, 2021, doi: 10.1109/ICICT4SD50815.2021.9396845.

L. Wu and Y. Chen, “Mushroom Recognition and Classification Based on Convolutional Neural Network,” IMCEC 2022 - IEEE 5th Adv. Inf. Manag. Commun. Electron. Autom. Control Conf., vol. 5, pp. 1430–1433, 2022, doi: 10.1109/IMCEC55388.2022.10019866.

U. S. Rahmadhani et al., “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” vol. 8, no. 2, pp. 169–173, 2023.

W. Ketwongsa, S. Boonlue, and U. Kokaew, “applied sciences A New Deep Learning Model for the Classification of Poisonous and Edible Mushrooms Based on Improved AlexNet Convolutional Neural Network,” 2022.

L. Farokhah, R. Sarno, and C. Fatichah, ‘‘Simplified 2D CNN architecture with channel selection for emotion recognition using EEG spectrogram,’’ IEEE Access, vol. 11, pp. 46330–46343, 2023, doi: 10.1109/ACCESS.2023.3275565.

Published
2024-02-18
How to Cite
Lia Farokhah, & Suastika Yulia Riska. (2024). Analysis and Development of Eight Deep Learning Architectures for the Classification of Mushrooms. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(1), 142 - 149. https://doi.org/10.29207/resti.v8i1.5498
Section
Information Technology Articles