Brent Crude Oil Price Forecasting using the Cascade Forward Neural Network

  • Fatkhurokhman Fauzi Universitas Muhammadiyah Semarang
  • Dewi Ratnasari Wijaya Universitas Muhammadiyah Semarang
  • Tiani Wahyu Utami Universitas Muhammadiyah Semarang
Keywords: MAPE, artificial neural networks, cascade forwards, brent, crude oil

Abstract

Crude oil is one of the most traded non-food products or commodities in the world. In Indonesia, crude oil will still be a contributor to the gross domestic product in 2021. The excessive consumption of fuel oil (BBM) in Indonesia has resulted in a scarcity of crude oil, especially diesel. Forecasting the price of Brent crude oil is an important effort to anticipate fluctuations in the price of fuel oil. The cascade-forward neural network (CFNN) method is proposed to forecast fuel prices because of its superiority in fluctuating data types. The data used in this research is the price of Brent crude oil in the period January 2008 to December 2022. The CFNN method will be evaluated using the mean absolute percentage error (MAPE) to choose the best architectural model. The best Architectural Model is used to predict the next 12 months. After 10 architectural model trials, 2-6-1 became the best model with a MAPE data training value of 6.3473% and MAPE data testing of 9.4689%. Forecasting the results for Brent crude oil for the next 12 months tends to experience a downward trend until December 2023.

Downloads

Download data is not yet available.

References

S. Ma’arif, “Kebijakan Perminyakan Nasional: Dari Kendali Negara Menuju Kapitalisme Pasar,” Administrasi Negara, vol. 3, no. 1, pp. 46–55, 2014.

H. Purwanto, A. Adiguna, R. K. Rustam, and B. A. Budiarto, “Pemanfaatan Minyak Mentah (Crude Oil) Untuk Meningkatkan Stabilisasi Jalan Tanah Pada Daerah Makarti Jaya Kabupaten Banyuasin,” Jurnal Deformasi, vol. 4, no. 2, p. 63, 2020, doi: 10.31851/deformasi.v4i2.3546.

Badan Pusat Statistik, “Volume Ekspor dan Impor Migas,” 2022. https://www.bps.go.id (accessed Sep. 27, 2022).

Cristopher Daniel, “GONCANGAN HARGA MINYAK DUNIA TERHADAP,” Ekonomika, Fakultas Bisnis, D A N Kristen, Universitas Wacana, Satya, 2014.

A. Basit, “Pengaruh Harga Emas Dan Minyak Dunia Terhadap Indeks Harga Saham Gabungan (IHSG) Periode 2016-2019,” REVENUE: Jurnal Manajemen Bisnis Islam, vol. 1, no. 2, pp. 73–82, 2020, doi: 10.24042/revenue.v1i2.6073.

M. Buchori and T. Sukmono, “Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ,” PROZIMA (Productivity, Optimization and Manufacturing System Engineering), vol. 2, no. 1, pp. 27–33, 2018, doi: 10.21070/prozima.v2i1.1290.

Y. P. Sugandhi, B. Warsito, and A. R. Hakim, “Prediksi Harga Saham Harian Menggunakan Cascade Forward Neural Network (CFNN) Dengan Particle Swarm Optimization (PSO),” STATISTIKA Journal of Theoretical Statistics and Its Applications, vol. 19, no. 2, pp. 71–82, 2019, doi: 10.29313/jstat.v19i2.4878.

A. Wulandari, S. Wahyuningsih, and F. D. T. Amijaya, “Peramalan Harga Minyak Mentah Dunia (Crude Oil) Menggunakan Metode Radial Basis Function Neural Network (RBFNN),” Jurnal EKSPONENSIAL, vol. 8, no. 2, pp. 161–167, 2017.

Laurene Fausett, “Fundamental of Neural Network (Architecture Algorithms, and Applications),” Upper Saddle River: New Jersey: Prentice-Hall., 1999, pp. 12–15.

B. Warsito, R. Santoso, Suparti, and H. Yasin, “Cascade Forward Neural Network for Time Series Prediction,” J Phys Conf Ser, vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012097.

E. R. S. Wigati, B. Warsito, and R. Rahmawati, “Pemodelan Jaringan Syaraf Tiruan Dengan Cascade Forward Backpropagation Pada Kurs Rupiah Terhadap Dolar Amerika Serikat,” Jurnal Gaussian, vol. 7, no. 1, pp. 64–72, 2018, doi: 10.14710/j.gauss.v7i1.26636.

F. Alamsyah, “Peramalan Beban Listrik Harian Menggunakan Artificial Neural Network,” pp. 203–209, 2017.

M.-R. Mohammadi, A. Hemmati-Sarapardeh, M. Schaffie, M. M. Husein, and M. Ranjbar, “Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery,” J Pet Sci Eng, vol. 205, p. 108836, 2021, doi: https://doi.org/10.1016/j.petrol.2021.108836.

M. Alzayed, H. Chaoui, and Y. Farajpour, “Maximum Power Tracking for a Wind Energy Conversion System Using Cascade-Forward Neural Networks,” IEEE Trans Sustain Energy, vol. 12, no. 4, pp. 2367–2377, 2021, doi: 10.1109/TSTE.2021.3094093.

M. Sh. Alkhasawneh, “Hybrid Cascade Forward Neural Network with Elman Neural Network for Disease Prediction,” Arab J Sci Eng, vol. 44, no. 11, pp. 9209–9220, 2019, doi: 10.1007/s13369-019-03829-3.

M. Sh. Alkhasawneh and L. T. Tay, “A Hybrid Intelligent System Integrating the Cascade Forward Neural Network with Elman Neural Network,” Arab J Sci Eng, vol. 43, no. 12, pp. 6737–6749, 2018, doi: 10.1007/s13369-017-2833-3.

D. Sumihi, J. Kekenusa, and N. Nainggolan, “Prediksi Tinggi Gelombang Laut di Perairan Laut Sulawesi Utara dengan Menggunakan Model Vector Autoregressive (VAR),” d’CARTESIAN, vol. 6, no. 2, p. 73, 2017, doi: 10.35799/dc.6.2.2017.17837.

G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series,” Eur J Oper Res, vol. 160, no. 2, pp. 501–514, 2005, doi: 10.1016/j.ejor.2003.08.037.

William Wei, “Time Analiysis Univariate and Multivariate Methods,” 2nd ed.USA:Addison Wesley Publishing Company, 2019.

S. M. Karazi, M. Moradi, and K. Y. Benyounis, “Statistical and Numerical Approaches for Modeling and Optimizing Laser Micromachining Process-Review,” Reference Module in Materials Science and Materials Engineering, 2019, doi: 10.1016/b978-0-12-803581-8.11650-9.

A. Sopian, A. Wiyatno, and A. Riyandi, “Komparasi Algoritma Support Vector Machines dengan Algoritma Artificial Neural Network untuk Memprediksi Nilai Persetujuan Kredit Modal Kerja yang Diberikan Bank Umum,” Jurnal Teknologi Informatika dan Komputer, vol. 5, no. 1, pp. 88–95, 2019, doi: 10.37012/jtik.v5i1.224.

F. Zola, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa,” Jurnal Teknologi Dan Open Source, vol. 1, no. 1, pp. 58–72, 2018, doi: 10.36378/jtos.v1i1.12.

Mirza Cilimkovic, “Neural Networks and Back Propagation Algorithm,” Institute of Technology Blanchardstown, Blanchardstown Road North Dublin, vol. 15, pp. 3–7, 2015.

D. S. Badde, A. Gupta, and V. K. Patki, “Cascade and Feed Forward Back propagation Artificial Neural Network Models for Prediction of Compressive Strength of Ready Mix Concrete,” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), no. 2278–1684, pp. 1–6, 2009.

U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J Phys Conf Ser, vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012002.

Published
2023-08-13
How to Cite
Fatkhurokhman Fauzi, Dewi Ratnasari Wijaya, & Tiani Wahyu Utami. (2023). Brent Crude Oil Price Forecasting using the Cascade Forward Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 964 - 969. https://doi.org/10.29207/resti.v7i4.5052
Section
Information Technology Articles