Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification

  • Achmad Naila Muna Ramadhani Universitas Dian Nuswantoro
  • Galuh Wilujeng Saraswati Universitas Dian Nuswantoro
  • Rama Tri Agung UPN Veteran Yogyakarta
  • Heru Agus Santoso Universitas Dian Nuswantoro
Keywords: chili, comparison, CNN, mobilenetV2

Abstract

Chili is an important agricultural commodity in Indonesia and plays an significant role in the economic growth of the country. Its demand from households and industries reaches up to 61%. However, this high demand also means that monitoring efforts must be intensified, particularly for chili plant diseases that can greatly impact yields. If these diseases are not addressed promptly, they can lead to a decrease in production levels, which can negatively affect the economy. With technological advancements, automatic monitoring using image processing is now highly feasible, making monitoring more efficient and effective. Common chili plant diseases include chili leaf yellowing disease, chili leaf curling disease, cercospora leaf spots, and magnesium deficiency with symptoms that can be observed through the shape and color of the leaves. This research aims to classify chili plant diseases by comparing the CNN algorithm and the pre-trained MobileNetV2 based model performance using the Confussion Matrix. The study shows that the MobileNetV2 model, trained with a learning rate of 0.001, produces a more optimal model with an accuracy of 90% and based on the calculation of the confusion matrix, the average percentage values for recall, precision, and F1 score are 92%. These findings highlight the potential.

Downloads

Download data is not yet available.

References

P. Nuvaisiyah, F. Nhita, and D. Saepudin, “Price Prediction of Chili Commodities in Bandung Regency Using Bayesian Network,” Int. J. Inf. Commun. Technol., vol. 4, no. 2, p. 19, 2019, doi: 10.21108/ijoict.2018.42.204

H. D. A. Hamid and Nurul Hidayat, “Diagnosis Penyakit Tanaman Cabai Menggunakan Metode Modified K- Nearest Neighbor (MKNN),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2881–2886, 2019.

A. Tsany and R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng., vol. 8, no. 2, pp. 3039–3055, 2021.

A. Jinan, B. H. Hayadi, and U. P. Utama, “Journal of Computer and Engineering Science Volume 1, Nomor 2, April 2022 Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron),” vol. 1, no. April, pp. 37–44, 2022.

N. Hikmatia A.E and M. Ihsan Zul, “Aplikasi Penerjemah Bahasa Isyarat Indonesia menjadi Suara berbasis Android menggunakan Tensorflow,” J. Komput. Terap., vol. 7, no. Vol. 7 No. 1 (2021), pp. 74–83, 2021, doi: 10.35143/jkt.v7i1.4629.

F. D. Adhinata, N. A. F. Tanjung, W. Widayat, G. R. Pasfica, and F. R. Satura, “Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 2, p. 230, 2021, doi: 10.26555/jiteki.v7i2.20758.

W. Aceh and A. Dwi, “Inventarisasi Penyakit Pada Tanaman Cabai Merah (Capsicum annum l.) di Kebun Warga Gampong Suak Raya Kecamatan Johan Pahlawan Kabupaten Aceh Barat Inventory,” vol. 8, no. 1, pp. 70–75, 2022, doi: https://doi.org/10.35308/jal.v8i1.5293.

Z. Ulinnuha and R. N. K. Syarifa, “Insidensi penyakit daun keriting kuning beberapa varietas cabai pada berbagai tingkat toleransi terhadap intensitas cahaya rendah,” AGROSCRIPT J. Appl. Agric. Sci., vol. 3, no. 2, pp. 78–89, 2021.

D. Tania, “Mengenal Gejala Kurangnya Unsur Hara pada Cabai,” 2021. https://www.neurafarm.com/blog/InfoTania/Budidaya Tanaman/mengenal-gejala-kurangnya-unsur-hara-pada-cabai (accessed Oct. 08, 2022).

K. Wisaeng and W. Sa-Ngiamvibool, “Detection of plant leaf diseases using K-mean++ intermeans thresholding algorithm,” J. Comput. Sci., vol. 16, no. 9, pp. 1237–1249, 2020, doi: 10.3844/jcssp.2020.1237.1249.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.

W. Gong, H. Chen, Z. Zhang, M. Zhang, and H. Gao, “A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network with Global Average Pooling and 2-D Feature Image,” IEEE Access, vol. 8, pp. 73677–73697, 2020, doi: 10.1109/ACCESS.2020.2988323.

A. Kholik, “KLASIFIKASI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA TANGKAPAN LAYAR HALAMAN INSTAGRAM,” vol. 2, no. 2, pp. 10–20, 2021.

N. Gupta, “A Pre-Trained Vs Fine-Tuning Methodology in Transfer Learning,” J. Phys. Conf. Ser., vol. 1947, no. 1, 2021, doi: 10.1088/1742-6596/1947/1/012028.

R. Munarto and A. Darma, “Klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan Convolutional Neural Network,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 10, no. 2, pp. 30–43, 2021, doi: 10.36055/setrum.v10i2.12991.

O. Stephen, M. Sain, U. J. Maduh, and D. U. Jeong, “An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare,” J. Healthc. Eng., vol. 2019, 2019, doi: 10.1155/2019/4180949.

G. Sambasivam and G. D. Opiyo, “A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks,” Egypt. Informatics J., vol. 22, no. 1, pp. 27–34, 2021, doi: 10.1016/j.eij.2020.02.007.

J. Browniee, “How to Calculate Precision, Recall, and F-Measure for Imbalanced Classification,” 2020. https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/#:~:text=Wecan calculate the recall,Recall %3D 90 %2F 100 (accessed Oct. 10, 2022).

A. Tasnim, M. Saiduzzaman, M. A. Rahman, J. Akhter, and A. S. M. M. Rahaman, “Performance Evaluation of Multiple Classifiers for Predicting Fake News,” J. Comput. Commun., vol. 10, no. 09, pp. 1–21, 2022, doi: 10.4236/jcc.2022.109001.

A. Kulkarni, D. Chong, and F. A. Batarseh, Foundations of data imbalance and solutions for a data democracy. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-818366-3.00005-8.

Published
2023-08-12
How to Cite
Achmad Naila Muna Ramadhani, Galuh Wilujeng Saraswati, Rama Tri Agung, & Heru Agus Santoso. (2023). Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 940 - 946. https://doi.org/10.29207/resti.v7i4.5028
Section
Information Technology Articles