Implementation of Self-Organizing Map (SOM) Algorithm for Image Classification of Medicinal Weeds

  • Hendra Mayatopani Universitas Pradita
  • Nurdiana Handayani Universitas Muhammadiyah Tangerang
  • Ri Sabti Septarini Universitas Muhammadiyah Tangerang
  • Rini Nuraini Universitas Nasional
  • Nofitri Heriyani Universitas Muhammadiyah Tangerang
Keywords: image classification, artificial neural networks, self-organizing maps, medicinal weed leaves

Abstract

Wild plants or weeds often become enemies or disturb the main cultivated plants. In its development, wild plants or weeds actually have ingredients that are beneficial to the body and can be used as medicine. However, many people still need knowledge about the types of weed plants that have medicinal properties, especially the leaves. The purpose of this research is to classify the image of weed leaves with medicinal properties based on color and texture characteristics with an artificial neural network using a Self-Organizing Map (SOM). To improve information in feature extraction, RGB and HSV color features are used as well as texture features with Gray Level Co-occurrence Matrix (GLCM). Furthermore, the results of feature extraction will be identified as groups or classes with the Self-Organizing Map (SOM) algorithm which divides the input pattern into several groups so that the network output is in the form of a group that is most similar to the input provided. The test produces a precision value of 91.11%, a recall value of 88.17% and an accuracy value of 89.44%. The results of the accuracy of the SOM model for image classification on medicinal weed leaves are in the good category.

 

Downloads

Download data is not yet available.

References

A. Setiawan, “Keanekaragaman Hayati Indonesia: Masalah dan Upaya Konservasinya,” Indones. J. Conserv., vol. 11, no. 1, pp. 13–21, 2022, doi: 10.15294/ijc.v11i1.34532.

A. Badrunasar and H. B. Santoso, Tumbuhan Liar Berkhasiat Obat. Bogor: Forda Press, 2017.

R. S. Siregar, A. F. Tanjung, A. F. Siregar, Salsabila, I. H. Bangun, and M. O. Mulya, “Studi Literatur tentang Pemanfaatan Tanaman Obat Tradisional,” in Seminar of Social Sciences Engineering & Humaniora, 2020, pp. 385–391.

U. G. Salamah and R. Ekawati, Pengolahan Citra Digital. Bandung: Media Sains Indonesia, 2021.

A. Ambarwari1, Q. J. Adrian, and Y. Herdiyeni, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 117–122, 2021.

Z. Abidin, R. I. Borman, F. B. Ananda, P. Prasetyawan, F. Rossi, and Y. Jusman, “Classification of Indonesian Traditional Snacks Based on Image Using Convolutional Neural Network (CNN) Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 18–23.

R. I. Borman, B. Priopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo),” in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2017, no. September, pp. 1–4.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50.

D. A. Anggoro and P. I. Rahmatullah, “The Implementation of Subspace Outlier Detection in K-Nearest Neighbors to Improve Accuracy in Bank Marketing Data,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 2, pp. 545–550, 2020.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2021, pp. 12–17.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.

Z. Azmi, “Artificial Neural Network Model For Wind Mill,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 3, pp. 40–48, 2021.

F. Izhari, M. Zarlis, and S. Sutarman, “Analysis of backpropagation neural neural network algorithm on student ability based cognitive aspects,” in 3rd NICTE, 2020. doi: 10.1088/1757-899X/725/1/012103.

C. Marc and G. Czibula, “KarySOM : An Unsupervised Learning based Approach for Human Karyotyping using Self-Organizing Maps,” in International Conference on Intelligent Computer Communication and Processing (ICCP), 2018, pp. 167–174.

N. S. R. Pillai, R. R. Hemamalin, and G. A. N.Pavithra, “Satellite Image Classification Using Self Organizing Map And Ensemble Classifiers,” in Proceeding of International Conference on Systems Computation Automation and Networking, 2019, pp. 1–5.

B. Dong, G. Weng, and R. Jin, “Active contour model driven by Self Organizing Maps for image segmentation,” Expert Syst. Appl., vol. 177, pp. 1–9, 2021, doi: 10.1016/j.eswa.2021.114948.

F. Farooq, J. Ahmed, and L. Zheng, “Facial Expression Recognition Using Hybrid Features and Self-Organizing Maps,” in International Conference on Multimedia and Expo (ICME), 2017, pp. 409–414. doi: 10.1109/ICME.2017.8019503.

M. Wong, W. Abeysinghe, and C. Hung, “A Massive Self-Organizing Map For Hyperspectral Image Classification,” in Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1–5. doi: 10.1109/WHISPERS.2019.8921093.

S. Mishra and M. Panda, “Medical image retrieval using self-organising map on texture features,” Futur. Comput. Informatics J., vol. 3, pp. 359–370, 2018, doi: 10.1016/j.fcij.2018.10.006.

N. Y. Arifin et al., Analisa Perancangan Sistem Informasi. Batam: Cendikia Mulia Mandiri, 2021.

A. Mulyanto, W. Jatmiko, P. Mursanto, P. Prasetyawan, and R. I. Borman, “A New Indonesian Traffic Obstacle Dataset and Performance Evaluation of YOLOv4 for ADAS,” J. ICT Res. Appl., vol. 14, no. 3, pp. 286–298, 2021.

C. Luo, Y. Hao, and Z. Tong, “Research on Digital Image Processing Technology and Its Application,” in International Conference on Management, Education and Information (MEICI), 2018, vol. 163, pp. 587–592.

S. Sumijan and P. A. W. Purnama, Teori dan Aplikasi Pengolahan Citra Digital Penerapan dalam Bidang Citra Medis. Solok: Insan Cendekia Mandiri, 2021.

H. Fitriyah and R. C. Wihandika, Dasar-Dasar Pengolahan Citra Digital. Malang: Universitas Brawijaya Press, 2021.

R. I. Borman, Y. Fernando, and Y. E. P. Yudoutomo, “Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 339–345, 2022.

B. Imran and M. M. Efendi, “The Implementation of Extraction Feature Using GLCM and Back-Propagation Artificial Neural Network to Clasify Lombok Songket Woven Cloth,” J. TECHNO Nusa Mandiri, vol. 17, no. 2, pp. 131–136, 2020.

G. Zhu, X. Wu, J. Ge, F. Liu, W. Zhao, and C. Wu, “In fl uence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM),” J. Clean. Prod., vol. 257, pp. 1–14, 2020, doi: 10.1016/j.jclepro.2020.120664.

G. Duan, X. Liao, W. Yu, and G. Li, “Classification and Prediction of Violence Against Chinese Medical Staff on the Sina Microblog Based on a Self-Organizing Map: Quantitative Study,” J. Med. Interes. Res., vol. 22, no. 5, pp. 1–13, 2020, doi: 10.2196/13294.

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.

B. Juba and H. S. Le, “Precision-Recall versus Accuracy and the Role of Large Data Sets,” in The Thirty-Third AAAI Conference on Artificial Intelligence, 2019, pp. 4039–4048.

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.

Published
2023-06-01
How to Cite
Mayatopani, H., Handayani, N., Septarini, R. S., Nuraini, R., & Heriyani, N. (2023). Implementation of Self-Organizing Map (SOM) Algorithm for Image Classification of Medicinal Weeds. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 437 - 444. https://doi.org/10.29207/resti.v7i3.4755
Section
Information Technology Articles