Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease

  • Wisnu Gilang Pamungkas Universitas Muhammadiyah Malang
  • Machammad Iqbal Putra Wardhana Universitas Muhammadiyah Malang
  • Zamah Sari Universitas Muhammadiyah Malang
  • Yufiz Azhar Universitas Muhammadiyah Malang
Keywords: Maize Plant Disease, EfficientNet-B0, ResNet-50, Convolutional Neural Network

Abstract

Corn is the second largest commodity in Indonesia after rice. In Indonesia, East Java is the largest corn producer. The first symptom of the disease in corn plants is marked by small brownish oval spots which are usually caused by the fungus Helminthoporium maydis, if left unchecked, farmers can suffer losses due to crop failure. Therefore it is important to provide treatment for diseases in corn plants as early as possible so that diseases in corn plants do not spread to other plants. In this study, the dataset used was taken from the kaggle website entitled Corn or Maize Leaf Disease Dataset. This dataset has 4 classifications: Blight, Common Rust, Grey leaf spot, and Healthy. This study uses the Convolutional Neural Network method with 2 different models, namely the EfficientNet-B0 and ResNet-50 models. The architectures used are the dense layer, the dropout layer, and the GlobalAveragePooling layer with a dataset sharing ratio of 70% which is training data and 30% is validation data. After testing the two proposed scenarios, the accuracy results obtained in the test model scenario 1, namely EfficientNet- B0 is 94% and for the second test model scenario, namely ResNet-50, the accuracy is 93%.

Downloads

Download data is not yet available.

References

S. I. Ramadhani, Y. Masruni, and N. Aidawati, “Reaksi Ketahanan Beberapa Genotipe Calon Varietas Jagung Hibrida terhadap Tiga Penyakit Utama Jagung,” Seminar Nasional dalam Rangka Dies Natalis ke-45 UNS Tahun 2021, vol. 5, no. 1, pp. 245–252, 2021.

H. Mirsam, S. Suriani, A. T. Makkulawu, N. Djaenuddin, and F. Abdullah, “Evaluasi Ketahanan Genotipe Jagung Hibrida terhadap Penyakit Hawar Daun Maydis dan Karat Daun,” Prosiding Seminar Nasional Lahan Suboptimal ke-9 Tahun 2021, pp. 305–313, 2021.

E. H. Rachmawanto and H. P. Hadi, “Optimasi Ekstraksi Fitur Pada Knn Dalam Klasifikasi Penyakit Daun Jagung,” Dinamik, vol. 26, no. 2, pp. 58–67, 2021, doi: 10.35315/dinamik.v26i2.8673.

M. M. Suhadi, M. Alauddin Helmi, and W. Setiawan, “Simulasi Klasifikasi Hama Dan Penyakit Pada Jagung Dengan Naive Bayes,” vol. 10, no. 1, 2021.

M. R. Pahlevi, “Aplikasi Sistem Pakar Bebasis Web Untuk Diagnosa Penyakit Jagung,” Prosiding Seminar Nasional Teknologi …, pp. 265–273, 2021, [Online]. Available: http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1921

M. I. Rosadi, M. Lutfi, and S. Artikel, “Identifikasi Jenis Penyakit Daun Jagung Menggunakan Deep Learning Pre-Trained Model INFO ARTIKEL ABSTRAK”, doi: 10.35891/explorit.

J. Teknologi Informasi, R. Suhendra, and I. Juliwardi, “Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine,” vol. 1, no. 1, pp. 29–35, 2022, [Online]. Available: http://jurnal.utu.ac.id/JTI

U. Muhammadiyah Jember, R. Paleva, D. Arifianto, and A. Maryam Zakiyah, “Diagnosis Penyakit Tanaman Jagung Dengan Metode Dempster Shafer Diagnosis of Corn Plant Diseases Using the Dempster Shafer Method,” 2022. [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

D. Irfansyah et al., “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, 2021, [Online]. Available: https://data.mendeley.com/datasets/c5yvn32dzg/2.

A. M. Lesmana, R. P. Fadhillah, and C. Rozikin, “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN),” Jurnal Sains dan Informatika, vol. 8, no. 1, pp. 21–30, 2022, doi: 10.34128/jsi.v8i1.377.

B. S. Palopo, “batang dan buah . Daun tanaman yang,” vol. 12, pp. 42–50, 2022.

Moh. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 4, pp. 218–223, Oct. 2021, doi: 10.14710/jtsiskom.2021.14013.

D. Hidayat, “Klasifikasi Jenis Mangga Berdasarkan Bentuk Dan Tekstur Daun Menggunakan Metode Convolutio Nalneural Network(Cnn) Classification Of Types Of Mango Based On Leave Shape And Texture Using Convolutio Nalneural Network(Cnn) Method,” Journal of Information Technology and Computer Science (INTECOMS), vol. 5, no. 1, 2022.

R. Prabowo, A. Roudhoh, and F. Matematika dan Ilmu Pengetahuan Alam, “Klasifikasi Image Tumbuhan Obat Sirih dan Binahong Menggunakan Metode Convolutional Neural Network (CNN).”

E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Informatika Ekonomi Bisnis, vol. 4, no. 3, pp. 72–77, 2022, doi: 10.37034/infeb.v4i3.143.

F. D. Adhinata, G. F. Fitriana, A. Wijayanto, and M. P. K. Putra, “Corn Disease Classification Using Transfer Learning and Convolutional Neural Network,” JUITA: Jurnal Informatika, vol. 9, no. 2, p. 211, 2021, doi: 10.30595/juita.v9i2.11686.

I. P. Putra, R. Rusbandi, and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” Jurnal Algoritme, vol. 2, no. 2, pp. 102–112, 2022, doi: 10.35957/algoritme.v2i2.2360.

S. A. Sabrina and W. F. al Maki, “Klasifikasi Penyakit Pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” eProceedings …, vol. 9, no. 3, pp. 1919–1927, 2022, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17997%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/download/17997/17626

Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecol Inform, vol. 61, no. June 2020, p. 101182, 2021, doi: 10.1016/j.ecoinf.2020.101182.

A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creative Information Technology Journal, vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.

M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” Journal of Dinda : Data Science, Information Technology, and Data Analytics, vol. 2, no. 1, pp. 37–45, 2022, doi: 10.20895/dinda.v2i1.341.

Smaranjit Ghose, “Corn or Maize Leaf Disease Dataset,” https://www.kaggle.com/datasets/smaranjitghose/corn-or-maize-leaf-disease-dataset, 2020.

D. R. Nayak, N. Padhy, P. K. Mallick, M. Zymbler, and S. Kumar, “Brain Tumor Classification Using Dense Efficient-Net,” Axioms, vol. 11, no. 1, 2022, doi: 10.3390/axioms11010034.

Jalu Nusantoro, Faldo Fajri Afrinanto, Wana Salam Labibah, Zamah Sari, and Yufis Azhar, “Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 430–441, Jun. 2022, doi: 10.29207/resti.v6i3.4118.

M. M. Nayak and S. D. K. Anjanappa, “Brain Tumor Classification for MR Images using Convolution Neural Network with Global Average Pooling,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 6, pp. 40–49, Dec. 2021, doi: 10.22266/ijies2021.1231.05.

M. A. Purnama Wibowo, Muhammad Bima Al Fayyadl, Yufis Azhar, and Zamah Sari, “Classification of Brain Tumors on MRI Images Using Convolutional Neural Network Model EfficientNet,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 538–547, Aug. 2022, doi: 10.29207/resti.v6i4.4119.

Published
2023-03-26
How to Cite
Pamungkas, W. G., Wardhana, M. I. P., Sari, Z., & Azhar, Y. (2023). Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 326 - 333. https://doi.org/10.29207/resti.v7i2.4736
Section
Information Technology Articles