Web-based CNN Application for Arabica Coffee Leaf Disease Prediction in Smart Agriculture

Keywords: Arabica Coffee, Convolutional Neural Networks, Image Processing, Leaf Disease, Machine learning

Abstract

In the agriculture industry, plant diseases provide difficulty, particularly for Arabica coffee production. A first step in eliminating and treating infections to avoid crop damage is recognizing ailments on Arabica coffee leaves. Convolutional neural networks (CNN) are rapidly advancing, making it possible to diagnose Arabica coffee leaf damage without a specialist's help. CNN is aimed to find features adaptively through backpropagation by adding layers including convolutional layers and pooling layers. This study aims to optimize and increase the accuracy of Arabica coffee leaf disease classification utilizing the neural network architectures: ResNet50, InceptionResNetV4, MobileNetV2, and DensNet169. Additionally, this research presents an interactive web platform integrated with the Arabica coffee leaf disease prediction system. Inside this research, 5000 image data points will be divided into five classes—Phoma, Rust, Cescospora, healthy, and Miner—to assess the efficacy of CNN architecture in classifying images of Arabica coffee leaf disease. 80:10:10 is the ratio between training data, validation, and testing. In the testing findings, the InceptionResnetV2 and DensNet169 designs had the highest accuracy, at 100%, followed by the MobileNetV2 architecture at 99% and the ResNet50 architecture at 59%. Even though MobileNetV2 is not more accurate than InceptionResnetV2 and DensNet169, MobileNetV2 is the smallest of the three models. The MobileNetV2 paradigm was chosen for web application development. The system accurately identified and advised treatment for Arabica coffee leaf diseases, as shown by the system's implementation outcomes.

 

Downloads

Download data is not yet available.

References

D. M. Yuwono, Statistika Kopi Indoenesia 2020, 5504006th ed. Jakarta: ©Badan Pusat Statistik / BPS – Statistics Indonesia Baru, 2021.

ICO, “Word Coffee Consumption,” International Coffee Organization, 2021. https://www.ico.org (accessed Jun. 15, 2022).

F. Zen and B. Budiasih, “Produktivitas dan Efisiensi Teknis Usaha Perkebunan Kopi di Sumatera Selatan dan Lampung,” J. Ekon. dan Pembang. Indones., pp. 72–86, 2019, doi: 10.21002/jepi.v0i0.1061.

S. Mulyani and Nildayanti, “Inventarisasi Hama dan Penyakit pada Pertanaman Kopi Organik,” AgroPlantae, vol. 7, no. 2, pp. 14–19, 2018.

R. K. W. Siska, L. Lubis, and L. Lisnawati, “Serangan karat daun Kopi (Hemileia vastatrix B et Br) pada tanaman kopi arabika di perkebunan rakyat Kabupaten Mandailing Natal Sumatera Utara,” ANR Conf. Ser. Agric. Nat. Resour., vol. 1, no. 1, pp. 82–86, 2018, doi: 10.32734/anr.v1i1.101.

L. Sugiarti, “Identifikasi Hama Dan Penyakit Pada Tanaman Kopi Di Kebun Percobaan Fakultas Pertanian Universitas Winaya Mukti,” Agro Wiralodra, vol. 2, no. 1, pp. 16–22, 2019, doi: 10.31943/agrowiralodra.v2i1.27.

Y. Defitri, “Pengamatan Beberapa Penyakit Yang Menyerang Tanaman Kopi (Coffea Sp) Di Desa Mekar Jaya Kecamatan Betara Kabupaten Tanjung Jabung Barat,” J. Media Pertan., vol. 1, no. 2, p. 78, 2016, doi: 10.33087/jagro.v1i2.19.

M. S. Memon, P. Kumar, and R. Iqbal, “Meta Deep Learn Leaf Disease Identification Model for Cotton Crop,” Computers, vol. 11, no. 7, p. 102, 2022, doi: 10.3390/computers11070102.

K. L. Narayanan et al., “Banana Plant Disease Classification Using Hybrid Convolutional Neural Network,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/9153699.

A. J. Belay, A. O. Salau, M. Ashagrie, and M. B. Haile, “Development of a chickpea disease detection and classification model using deep learning,” Informatics Med. Unlocked, vol. 31, no. May, p. 100970, 2022, doi: 10.1016/j.imu.2022.100970.

N. V. Megha Chandra Reddy, K. Ashish Reddy, G. Sushanth, and S. Sujatha, “Plant disease diagnosis and solution system based on neural networks,” Indian J. Comput. Sci. Eng., vol. 12, no. 4, pp. 1084–1092, 2021, doi: 10.21817/indjcse/2021/v12i4/211204226.

H. M S, N. Sharma, Y Sowjanya, Ch. Santoshini, R Sri Durga, and V. Akhila, “Plant disease prediction using convolutional neural network,” Emit. Int. J. Eng. Technol., vol. 9, no. 2, pp. 283–293, 2021, doi: 10.24003/emitter.v9i2.640.

S. S. Harakannanavar, J. M. Rudagi, V. I. Puranikmath, A. Siddiqua, and R. Pramodhini, “Plant leaf disease detection using computer vision and machine learning algorithms,” Glob. Transitions Proc., vol. 3, no. 1, pp. 305–310, 2022, doi: 10.1016/j.gltp.2022.03.016.

P. Zhao et al., “A Comparative Study of Deep Learning Classification Methods on a Small Environmental Microorganism Image Dataset (EMDS-6): From Convolutional Neural Networks to Visual Transformers,” Front. Microbiol., vol. 13, 2022, doi: 10.3389/fmicb.2022.792166.

Y. Aufar and T. P. Kaloka, “Robusta coffee leaf diseases detection based on MobileNetV2 model,” vol. 12, no. 6, pp. 6675–6683, 2022, doi: 10.11591/ijece.v12i6.pp6675-6683.

A. Pandey and K. Jain, “Ecological Informatics A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images,” Ecol. Inform., vol. 70, no. July 2021, p. 101725, 2022, doi: 10.1016/j.ecoinf.2022.101725.

X. Fan, P. Luo, Y. Mu, R. Zhou, T. Tjahjadi, and Y. Ren, “Leaf image based plant disease identification using transfer learning and feature fusion,” Comput. Electron. Agric., vol. 196, no. February, p. 106892, 2022, doi: 10.1016/j.compag.2022.106892.

B. N. Naik, R. Malmathanraj, and P. Palanisamy, “Ecological Informatics Detection and classification of chilli leaf disease using a squeeze-and-excitation-based CNN model,” Ecol. Inform., vol. 69, no. May, p. 101663, 2022, doi: 10.1016/j.ecoinf.2022.101663.

B. T. W. Putra, R. Amirudin, and B. Marhaenanto, “The Evaluation of Deep Learning Using Convolutional Neural Network (CNN) Approach for Identifying Arabica and Robusta Coffee Plants,” J. Biosyst. Eng., vol. 47, no. 2, pp. 118–129, 2022, doi: 10.1007/s42853-022-00136-y.

C. Le, L. Pham, N. NVN, T. Nguyen, and L. H. Trang, “A Robust and Low Complexity Deep Learning Model for Remote Sensing Image Classification,” Comput. Vis. Pattern Recognit., 2022, doi: 10.1145/3549555.3549568.

J. Jepkoech, D. M. Mugo, B. K. Kenduiywo, and E. C. Too, “Arabica coffee leaf images dataset for coffee leaf disease detection and classification,” Data Br., vol. 36, p. 107142, 2021, doi: 10.1016/j.dib.2021.107142.

O. Rashed et al., “Heartbeat murmurs detection in phonocardiogram recordings via transfer learning,” Alexandria Eng. J., vol. 61, no. 12, pp. 10995–11002, 2022, doi: 10.1016/j.aej.2022.04.031.

Andrew and H. Santoso, “Compare VGG19 , ResNet50 , Inception-V3 for review food rating,” Sink. J. dan Penelit. Tek. Inform., vol. 7, no. 2, pp. 485–494, 2022, doi: https://doi.org/10.33395/sinkron.v7i2.11383 e-ISSN.

A. Lang et al., “Informatics in Medicine Unlocked Model architecture and tile size selection for convolutional neural network training for non-small cell lung cancer detection on whole slide images,” Informatics Med. Unlocked, vol. 28, p. 100850, 2022, doi: 10.1016/j.imu.2022.100850.

S. Barin, M. Saribaş, B. G. Çiltaş, G. E. Güraksin, and U. Köse, “Hybrid Convolutional Neural Network- Based Diagnosis System for Intracranial Hemorrhage,” BRAIN. Broad Res. Artif. Intell. Neurosci., vol. 12, no. 4, pp. 1–27, 2021, doi: https://doi.org/10.18662/brain/12.4/236 Hybrid.

R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” Sixth Inf. Syst. Int. Conf. (ISICO 2021), vol. 197, pp. 198–207, 2022, doi: 10.1016/j.procs.2021.12.132.

U. Seidaliyeva, D. Akhmetov, L. Ilipbayeva, and E. T. Matson, “Real-Time and Accurate Drone Detection in a Video with a Static Background,” Sensors, vol. 20, no. 14, p. 3856, 2021, doi: https://doi.org/10.3390/s20143856.

X. Yin, D. Wu, Y. Shang, B. Jiang, and H. Song, “Using an E ffi cientNet-LSTM for the recognition of single Cow ’ s motion behaviours in a complicated environment,” Comput. Electron. Agric., vol. 177, no. June, p. 105707, 2020, doi: 10.1016/j.compag.2020.105707.

A. Vulli et al., “Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy,” Sensors, vol. 22, no. 8, p. 2988, 2022, doi: https://doi.org/10.3390/s22082988.

R. M. AlZoman and M. J. F. Alenazi, “A Comparative Study of Traffic Classification Techniques for Smart City Networks,” Sensors, vol. 21, no. 14. 2021, doi: 10.3390/s21144677.

Published
2023-02-02
How to Cite
Yazid Aufar, Muhammad Helmy Abdillah, & Jiki Romadoni. (2023). Web-based CNN Application for Arabica Coffee Leaf Disease Prediction in Smart Agriculture. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(1), 71 - 79. https://doi.org/10.29207/resti.v7i1.4622
Section
Information Systems Engineering Articles