Identification of Color and Texture of Ripe Passion Fruit with Perceptron Neural Network Method
Abstract
Research using artificial neural network methods has been developed as a tool that can help human tasks, one of which is for passion fruit UMKM entrepreneurs. The problem so far that has been faced by UMKM entrepreneurs of passion fruit is that it is difficult to identify ripe passion fruit with sweet and sour taste, because there are 6 colors of passion fruit and the color of passion fruit skin is visually slightly different, as well as the texture of maturity. The main purpose of this study was to identify the color structure and texture of the ripeness of passion fruit, in order to recognize the color and texture of the ripeness of passion fruit which is good for processing into syrup, jam, jelly, juice, passion fruit juice powder by entrepreneurs of UMKM of passion fruit. This study empirically tested the color and texture of the ripeness of 10 passion fruit using the perceptron artificial neural network learning method. The data is obtained from an image that will be entered into the program. The results of the identification process using the perceptron artificial neural network from the tests that have been carried out previously, the highest calculation results obtained with the best results using a learning rate of 0.8 and 500 epoch iterations and producing an accuracy of 80%.
Downloads
References
A. E. H. Siregar, T. Gultom, 2018, Karakterisasi Morfologi Markisa (Passiflora) Di Kabupaten Karo Sumatera Utara, Prosiding Seminar Nasional Biologi dan Pembelajarannya, Universitas Negeri Medan, 12 Oktober 2018, ISSN 2656-1670, pp. 1-11. http://digilib.unimed.ac.id/id/eprint/35468
Sam, 2020, Ciri Ciri Pohon Markisa (Passiflora edulis) Di Alam Liar, pp. 1-6, https://www.ciriciripohon.com/2020/03/ciri-ciri-pohon-markisa-di-alam-liar.html.
I. Fathurrahman, A. M. Nur., Fathurrahman, 2019, Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation, Infotek : Jurnal Informatika dan Teknologi Vol. 2 No. 1, Januari 2019, e-ISSN 2614-8773, pp. 27 – 33.
https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/976
Sidabutar, R. Douglas, 2020, Pengaplikasian Sensor Warna untuk Penentuan Kematangan Buah Markisa Ungu (Passiflora edulis L.) pada Alat Sortasi Tipe Gravitasi, http://repositori.usu.ac.id/handle/123456789/32730
A. B. Kaswar , A. A. N. Risal, Fatiah , Nurjannah, 2020, Klasifikasi Tingkat Kematangan Buah Markisa Menggunakan Jaringan Syaraf Tiruan Berbasis Pengolahan Citra Digital, JESSI Volume 01 Nomor 1 May 2020, ISSN Cetak 2745-925X, ISSN Online 2722-273X, pp.1-8. https://ojs.unm.ac.id/JESSI/article/view/13505/8115
Siti R, Veri A, Dadang I M, 2021, Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode KNN Dan PCA, JSiI, Jurnal Sistem Informasi, Vol. 8, No. 2, September 2021, p-ISSN: 2406-7768, e-ISSN: 2581-2181, pp. 88-95. https://e-jurnal.lppmunsera.org/index.php/jsii/article/view/3638/1782
S. Y. Waryati, S Purwanti, 2022, Pelatihan Pengolahan Markisa Pada Kelompok Tani Markisa dan Kelompok UMKM di Blunyahrejo, Karangwaru, Tegal Rejo Kota Yogyakarta, Volume: 9/VI/2022, No.1, ISSN: 2443-1303, pp. 1-11. https://e-journal.janabadra.ac.id/index.php/adarma/article/view/1841/1244
A. A. Muhammad, A. Arkadia, S. N. Rifqi , Trianto, D. S. Prasvita, 2021, Klasifikasi Kematangan Buah Pisang Berdasarkan Fitur Warna dengan Metode SVM, Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 15 September 2021, e-ISBN 978-623-93343-4-5, pp. 82-87.
https://conference.upnvj.ac.id/index.php/senamika/article/view/1781/1344
E. Rouza, Jufri, L. Fimawahib, 2020, Implementasi Metode Perceptron Untuk Pengenalan Pola Jenis-Jenis Cacing Nematoda Usus, Jurnal RESTI, Vol. 4 No. 1 (2020), ISSN Media Elektronik: 2580-0760, pp. 180 – 186. https://jurnal.iaii.or.id/index.php/RESTI/article/view/1662/217
R. Akram, 2016, Pengenalan Huruf Latin Dengan Metode Perceptron, Jurnal Ilmiah JURUTERA Vol.03 No.01 (06.2016), ISSN 2356-5438, pp. 033–037. https://ejurnalunsam.id/index.php/jurutera/article/view/1575/1186
Elekson Simatupang, 2019, Jaringan Syaraf Tiruan Menggunakan Metode Perceptron Untuk Menentukan Penyakit Pada Tanaman Buah Nanas, Majalah Ilmiah INTI, Volume 6, Nomor 2, Februari 2019, ISSN 2339-210X, pp. 218-223. https://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/1423/1148
P. Bangun, Nurhayati, M. Sihombing, 2021, Pengolahan Citra Untuk Identifikasi Kematangan Buah Jeruk Dengan Menggunakan Metode Backpropagation Berdasarkan Nilai HSV, Jurnal Teknik Informatika Kaputama (JTIK) Vol. 5 , No. 1, Januari 2021, P-ISSN: 2548-9704, E-ISSN: 2686-0880, pp. 85-91. https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/446
Andrian. “Penerapan Algoritma Backpropagation Dan Principal Component Analysis Untuk Pengenalan Wajah”, Jurnal Teknovasi, Volume 01, Nomor 2, ISSN : 2355-701X, pp. 62 – 70, 2014.
Dio Very Hutabarat1, Solikhun2, M. Fauzan3, Agus Perdana Windarto4, Fitri Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran”, BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, Vol. 2, No. 1, Maret 2021, ISSN: 2722-0850, pp. 21-29, 2021.
Y. N. Sari , 4611412033, “Jaringan Syaraf Tiruan Backpropagation Untuk Memprediksi Luas Area Serangan Hama Pada Tanaman Bawang”, Under Graduates thesis, Universitas Negeri Semarang.m 2016.
E. Budianita, T. Ulfadhyani., F. Yanto., Pizaini, “Implementasi Algoritma Canny Dan Backpropagation Untuk Mengklasifikasi Jenis Tanaman Mangga”, Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, ISSN (Printed) : 2579-7271, ISSN (Online ) : 2579-5406, pp. 13-41, Pekanbaru,12 November 2019. http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/7774
J. R. Simanungkalit, Haviluddin, H. S. Pakpahan, N. Puspitasari dan M. Wati, “Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet”, ILKOM Jurnal Ilmiah, Vol. 12 No. 1, E-ISSN 2548-7779, , pp.32-38, April 2020
http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/521/pdf
D. V. Hutabarat, Solikhun, M. Fauzan, A. P. Windarto, F. Rizki, ”Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran”, BIOS :Jurnal Teknologi Informasi dan Rekayasa Komputer, Vol.2, No.1, Maret 2021, hlm. 21-29, ISSN: 2722-0850, 2021. https://bios.sinergis.org/index.php/bios/article/view/18/19.
Copyright (c) 2023 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;