Identification of Color and Texture of Ripe Passion Fruit with Perceptron Neural Network Method

  • Siswanto Universitas Budi Luhur
  • Riefky N. Sungkar Universitas Budi Luhur
  • M. Anif Universitas Budi Luhur
  • Basuki Hari Prasetyo Universitas Budi Luhur
  • Subandi Universitas Budi Luhur
  • Ari Saputro Universitas Budi Luhur
  • Buana Suhurdin Putra STMIK Mercusuar
Keywords: color identification, ripeness texture, passion fruit, perceptron

Abstract

Research using artificial neural network methods has been developed as a tool that can help human tasks, one of which is for passion fruit UMKM entrepreneurs. The problem so far that has been faced by UMKM  entrepreneurs of passion fruit  is that it is difficult to identify ripe passion fruit with sweet and sour taste, because there are 6 colors of passion fruit and the color of passion fruit skin is visually slightly different, as well as the texture of maturity. The main purpose of this study was to identify the color structure and texture of the ripeness of passion fruit, in order to recognize the color and texture of the ripeness of passion fruit which is good for processing into syrup, jam, jelly, juice, passion fruit juice powder by entrepreneurs of UMKM of passion fruit. This study empirically tested the color and texture of the ripeness of 10 passion fruit using the perceptron artificial neural network learning method. The data is obtained from an image that will be entered into the program. The results of the identification process using the perceptron artificial neural network from the tests that have been carried out previously, the highest calculation results obtained with the best results using a learning rate of 0.8 and 500 epoch iterations and producing an accuracy of 80%.

 

Downloads

Download data is not yet available.

References

A. E. H. Siregar, T. Gultom, 2018, Karakterisasi Morfologi Markisa (Passiflora) Di Kabupaten Karo Sumatera Utara, Prosiding Seminar Nasional Biologi dan Pembelajarannya, Universitas Negeri Medan, 12 Oktober 2018, ISSN 2656-1670, pp. 1-11. http://digilib.unimed.ac.id/id/eprint/35468

Sam, 2020, Ciri Ciri Pohon Markisa (Passiflora edulis) Di Alam Liar, pp. 1-6, https://www.ciriciripohon.com/2020/03/ciri-ciri-pohon-markisa-di-alam-liar.html.

I. Fathurrahman, A. M. Nur., Fathurrahman, 2019, Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation, Infotek : Jurnal Informatika dan Teknologi Vol. 2 No. 1, Januari 2019, e-ISSN 2614-8773, pp. 27 – 33.

https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/976

Sidabutar, R. Douglas, 2020, Pengaplikasian Sensor Warna untuk Penentuan Kematangan Buah Markisa Ungu (Passiflora edulis L.) pada Alat Sortasi Tipe Gravitasi, http://repositori.usu.ac.id/handle/123456789/32730

A. B. Kaswar , A. A. N. Risal, Fatiah , Nurjannah, 2020, Klasifikasi Tingkat Kematangan Buah Markisa Menggunakan Jaringan Syaraf Tiruan Berbasis Pengolahan Citra Digital, JESSI Volume 01 Nomor 1 May 2020, ISSN Cetak 2745-925X, ISSN Online 2722-273X, pp.1-8. https://ojs.unm.ac.id/JESSI/article/view/13505/8115

Siti R, Veri A, Dadang I M, 2021, Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode KNN Dan PCA, JSiI, Jurnal Sistem Informasi, Vol. 8, No. 2, September 2021, p-ISSN: 2406-7768, e-ISSN: 2581-2181, pp. 88-95. https://e-jurnal.lppmunsera.org/index.php/jsii/article/view/3638/1782

S. Y. Waryati, S Purwanti, 2022, Pelatihan Pengolahan Markisa Pada Kelompok Tani Markisa dan Kelompok UMKM di Blunyahrejo, Karangwaru, Tegal Rejo Kota Yogyakarta, Volume: 9/VI/2022, No.1, ISSN: 2443-1303, pp. 1-11. https://e-journal.janabadra.ac.id/index.php/adarma/article/view/1841/1244

A. A. Muhammad, A. Arkadia, S. N. Rifqi , Trianto, D. S. Prasvita, 2021, Klasifikasi Kematangan Buah Pisang Berdasarkan Fitur Warna dengan Metode SVM, Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 15 September 2021, e-ISBN 978-623-93343-4-5, pp. 82-87.

https://conference.upnvj.ac.id/index.php/senamika/article/view/1781/1344

E. Rouza, Jufri, L. Fimawahib, 2020, Implementasi Metode Perceptron Untuk Pengenalan Pola Jenis-Jenis Cacing Nematoda Usus, Jurnal RESTI, Vol. 4 No. 1 (2020), ISSN Media Elektronik: 2580-0760, pp. 180 – 186. https://jurnal.iaii.or.id/index.php/RESTI/article/view/1662/217

R. Akram, 2016, Pengenalan Huruf Latin Dengan Metode Perceptron, Jurnal Ilmiah JURUTERA Vol.03 No.01 (06.2016), ISSN 2356-5438, pp. 033–037. https://ejurnalunsam.id/index.php/jurutera/article/view/1575/1186

Elekson Simatupang, 2019, Jaringan Syaraf Tiruan Menggunakan Metode Perceptron Untuk Menentukan Penyakit Pada Tanaman Buah Nanas, Majalah Ilmiah INTI, Volume 6, Nomor 2, Februari 2019, ISSN 2339-210X, pp. 218-223. https://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/1423/1148

P. Bangun, Nurhayati, M. Sihombing, 2021, Pengolahan Citra Untuk Identifikasi Kematangan Buah Jeruk Dengan Menggunakan Metode Backpropagation Berdasarkan Nilai HSV, Jurnal Teknik Informatika Kaputama (JTIK) Vol. 5 , No. 1, Januari 2021, P-ISSN: 2548-9704, E-ISSN: 2686-0880, pp. 85-91. https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/446

Andrian. “Penerapan Algoritma Backpropagation Dan Principal Component Analysis Untuk Pengenalan Wajah”, Jurnal Teknovasi, Volume 01, Nomor 2, ISSN : 2355-701X, pp. 62 – 70, 2014.

https://media.neliti.com/media/publications/225710-penerapan-algoritma-backpropagation-dan-8c784c99.pdf

Dio Very Hutabarat1, Solikhun2, M. Fauzan3, Agus Perdana Windarto4, Fitri Rizki, “Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran”, BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, Vol. 2, No. 1, Maret 2021, ISSN: 2722-0850, pp. 21-29, 2021.

https://media.neliti.com/media/publications/340255-penerapan-algoritma-backpropagation-dala-933d525d.pdf

Y. N. Sari , 4611412033, “Jaringan Syaraf Tiruan Backpropagation Untuk Memprediksi Luas Area Serangan Hama Pada Tanaman Bawang”, Under Graduates thesis, Universitas Negeri Semarang.m 2016.

E. Budianita, T. Ulfadhyani., F. Yanto., Pizaini, “Implementasi Algoritma Canny Dan Backpropagation Untuk Mengklasifikasi Jenis Tanaman Mangga”, Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, ISSN (Printed) : 2579-7271, ISSN (Online ) : 2579-5406, pp. 13-41, Pekanbaru,12 November 2019. http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/7774

J. R. Simanungkalit, Haviluddin, H. S. Pakpahan, N. Puspitasari dan M. Wati, “Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet”, ILKOM Jurnal Ilmiah, Vol. 12 No. 1, E-ISSN 2548-7779, , pp.32-38, April 2020

http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/521/pdf

D. V. Hutabarat, Solikhun, M. Fauzan, A. P. Windarto, F. Rizki, ”Penerapan Algoritma Backpropagation dalam Memprediksi Hasil Panen Tanaman Sayuran”, BIOS :Jurnal Teknologi Informasi dan Rekayasa Komputer, Vol.2, No.1, Maret 2021, hlm. 21-29, ISSN: 2722-0850, 2021. https://bios.sinergis.org/index.php/bios/article/view/18/19.

Published
2023-02-06
How to Cite
Siswanto, Riefky N. Sungkar, M. Anif, Basuki Hari Prasetyo, Subandi, Ari Saputro, & Buana Suhurdin Putra. (2023). Identification of Color and Texture of Ripe Passion Fruit with Perceptron Neural Network Method. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(1), 179 - 184. https://doi.org/10.29207/resti.v7i1.4612
Section
Information Systems Engineering Articles

Most read articles by the same author(s)

1 2 > >>