Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16

  • Bella Dwi Mardiana Universitas Muhammadiyah Malang
  • Wahyu Budi Utomo Universitas Muhammadiyah Malang
  • Ulfah Nur Oktaviana Universitas Muhammadiyah Malang
  • Galih Wasis Wicaksono Universitas Muhammadiyah Malang
  • Agus Eko Minarno Universitas Muhammadiyah Malang
Keywords: Classification, Herbal Leaf, Transfer Learning, VGG16

Abstract

Herbal leaves are a type that is often used by people in the health sector. The problem faced is the lack of knowledge about the types of herbal leaves and the difficulty of distinguishing the types of herbal leaves for ordinary people who do not understand plants. If any type of plant is used, it will have a negative impact on health. Automatic classification with the help of technology will reduce the risk of misidentification of herbal leaf types. To make identification, a precise and accurate herbal leaf detection process is needed. This research aims to facilitate the classification model of herbal leaf images with a higher accuracy value than previous research. Therefore, the proposed method in this classification process is one of the Transfer Learning methods, namely Convolutional Neural Network (CNN) with a pretrained VGG16 model. This research uses a dataset of herbal leaves with a total of 10 classes: Belimbing Wuluh, Jambu Biji, Jeruk Nipis, Kemangi, Lidah Buaya, Nangka, Pandan, Pepaya, Seledri and Sirih. The performance of the results of the proposed classification method on the test dataset using Classification Report shows an increase in the results of the previous research accuracy value from 82% to 97%. This research also applies Image Data Generator in the augmentation process which aims to improve the image of herbal leaves, reduce overfitting, and improve accuracy.

Downloads

Download data is not yet available.

References

J. I. Penelitian et al., “Tanaman Obat Keluarga Dalam Perspektif Masyarakat Transisi (Studi Etnografis pada Masyarakat Desa Bawodobara),” vol. 1, no. 2, 2020.

L. Warta, K. Harismah, D. Chusniatun, J. T. Kimia, and J. Tarbiyah, “Pemanfaatan Daun Salam (Eugenia Polyantha) Sebagai Obat Herbal Dan Rempah Penyedap Makanan.”

Y. Darnita and R. Toyib, “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Penentuan Manfaat Tanaman Obat Herbal Berbasis Rule Based Reasoning.” [Online]. Available: http://sistemasi.ftik.unisi.ac.id

H. A. Atabay, “A Convolutional Neural Network With A New Architecture Applied On Leaf ClassificatioN,” 2016. [Online]. Available: www.iioab.org

A. Daun Herbal Menggunakan, K. Anam, and A. Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi (Authentication of Herbal Leaves Using Convolutional Neural Network and Raspberry Pi),” 2020.

M. Agil, T. S. Wahyuni, H. Studiawan, and R. Rakhmawati, “Optimalisasi Pemanfaatan Herbal Untuk Kesehatan Masyarakat Desa Wajik Kabupaten Lamongan Provinsi Jawa Timur,” Jurnal Pengabdian Kepada Masyarakat, vol. 24, no. 4, p. 883, 2019, doi: 10.24114/jpkm.v24i4.12515.

W. S. Jeon and S. Y. Rhee, “Plant leaf recognition using a convolution neural network,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 17, no. 1, pp. 26–34, 2017, doi: 10.5391/IJFIS.2017.17.1.26.

M. S. Mustafa, Z. Husin, W. K. Tan, M. F. Mavi, and R. S. M. Farook, “Development of automated hybrid intelligent system for herbs plant classification and early herbs plant disease detection,” Neural Comput Appl, vol. 32, no. 15, pp. 11419–11441, 2020, doi: 10.1007/s00521-019-04634-7.

F. Fitra Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network”.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network”.

F. Rochman and H. Junaedi, “Implementasi Transfer Learning untuk Identifikasi Ordo Tumbuhan melalui Daun,” Jurnal Syntax Admiration, vol. 1, no. 6, pp. 672–679, 2020.

Jalu Nusantoro, Faldo Fajri Afrinanto, Wana Salam Labibah, Zamah Sari, and Yufis Azhar, “Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 430–441, Jun. 2022, doi: 10.29207/resti.v6i3.4118.

A. Kaya, A. S. Keceli, C. Catal, H. Y. Yalic, H. Temucin, and B. Tekinerdogan, “Analysis of transfer learning for deep neural network based plant classification models,” Comput Electron Agric, vol. 158, pp. 20–29, Mar. 2019, doi: 10.1016/j.compag.2019.01.041.

E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.

A. TiaraSari and E. Haryatmi, “Penerapan Convolutional Neural Network Deep Learning dalam Pendeteksian Citra Biji Jagung Kering,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 265–271, Apr. 2021, doi: 10.29207/resti.v5i2.3040.

S. F. Alamsyah, “Implementasi Deep Learning Untuk Klasifikasi Tanaman,” Computers and its Applications Journal (2019) 113-122, vol. 2, pp. 113–122, 2019, [Online]. Available: https://doi.org/10.51804/ucaiaj.v2i2.113-122

K. S. Jye, S. Manickam, S. Malek, M. Mosleh, and S. K. Dhillon, “Automated plant identification using artificial neural network and support vector machine,” Front Life Sci, vol. 10, no. 1, pp. 98–107, 2017, doi: 10.1080/21553769.2017.1412361.

A. J. Rozaqi, A. Sunyoto, and R. Arief, “Deteksi Penyakit pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network Detection of Potato Leaves Disease Using Image Processing with Convolutional Neural Network Methods”.

I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN)”, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

H. Fauzi Jessar, A. Toto Wibowo, and E. Rachmawati, “Klasifikasi Genus Tanaman Sukulen Menggunakan Convolutional Neural Network.”

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, and R. Prathivi, “Terakreditasi SINTA Peringkat 2 Optimasi Model TL-CNN Untuk Klasifikasi Citra CIFAR-10,” masa berlaku mulai, vol. 1, no. 3, pp. 717–722, 2017.

H. X. Kan, L. Jin, and F. L. Zhou, “Classification of medicinal plant leaf image based on multi-feature extraction,” Pattern Recognition and Image Analysis, vol. 27, no. 3, pp. 581–587, 2017, doi: 10.1134/S105466181703018X.

I. Fauzi et al., “Klasifikasi Spesies Tanaman Magnolia Menggunakan,” vol. 2, no. 3, pp. 235–239, 2021.

E. Yuliana and A. Andoyo, “Perancangan Sistem Pakar Identifikasi Kualitas Daun Tembakau Berbasis Web Desktop,” Jtksi, vol. 01, no. 01, pp. 10–13, 2018.

A. Azis, “Identifikasi Jenis Ikan Menggunakan Model Hybrid Deep Learning Dan Algoritma Klasifikasi,” Sebatik, vol. 24, no. 2, pp. 201–206, 2020, doi: 10.46984/sebatik.v24i2.1057.

S. H. Wang, Y. D. Lv, Y. Sui, S. Liu, S. J. Wang, and Y. D. Zhang, “Alcoholism Detection by Data Augmentation and Convolutional Neural Network with Stochastic Pooling,” J Med Syst, vol. 42, no. 1, 2018, doi: 10.1007/s10916-017-0845-x.

L. Mookdarsanit and P. Mookdarsanit, “Thai Herb Identification with Medicinal Properties Using Convolutional Neural Network,” Suan Sunandha Science and Technology Journal, vol. 06, no. 2, pp. 34–40, 2019, doi: 10.14456/ssstj.2019.8.

S. Tammina, “Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images,” International Journal of Scientific and Research Publications (IJSRP), vol. 9, no. 10, p. p9420, 2019, doi: 10.29322/ijsrp.9.10.2019.p9420.

M. Koklu, I. Cinar, and Y. S. Taspinar, “Classification of rice varieties with deep learning methods,” Comput Electron Agric, vol. 187, no. November 2020, p. 106285, 2021, doi: 10.1016/j.compag.2021.106285.

Published
2023-02-01
How to Cite
Bella Dwi Mardiana, Wahyu Budi Utomo, Ulfah Nur Oktaviana, Galih Wasis Wicaksono, & Agus Eko Minarno. (2023). Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(1), 20 - 26. https://doi.org/10.29207/resti.v7i1.4550
Section
Information Technology Articles