A Comparison of the Smoothing Constant Values Among Exponential Smoothing Methods in Commodity Prices Forecasting

  • Hazriani Hazriani STMIK Handayani Makassar
  • Yuyun Dept. of Computer System, Handayani University
  • Mashur Razak Dept. of Informatics, Handayani University
Keywords: forecasting, smoothing constant, exponential smoothing, B-DES, SES

Abstract

Commodity prices forecasting is one of the business functions to estimate future demand based on past data trend. This study aims to implement a trial and error technique of the constant (alpha α) value in the exponential smoothing method. Dealing with confusion that often researchers find in selecting an alpha (α) value among exponential smoothing families, which suits characteristics of the investigated case. As selection of the constant value precisely contributes to reduce the forecasting deviation.   This paper used the alpha (α) value in the range 0,1 to 0,9 and utilized the mean absolute percentage error (MAPE) and Mean Absolute Error (MAE) as the parameter to know the grade of prediction.  In data training, the authors used Single Exponential Smoothing (SES) and Brown’s Double Exponential Smoothing (B-DES) as methods to compare the results of prediction. It is addressed that forecasting with alpha (α) 0,1 is the most optimal values for Single Exponential Smoothing (SES) in this case with margin error 0,00036 of MAPE and 16,84 of MAE.

 

Downloads

Download data is not yet available.

References

R. K. R. A. K. Agrawal and R. Adhikari, “An Introductory Study on Time Series Modeling and Forecasting Ratnadip Adhikari R. K. Agrawal,” arXiv Prepr. arXiv1302.6613, vol. 1302.6613, pp. 1–68, 2013.

A. Jafari-samimi, B. Shirazi, and Fazlollahtabar, “A Comparison Between Time Series , Exponential Smoothing , and Neural Network Methods To Forecast,” Iran. Econ. Rev., vol. 12, no. 19, pp. 19–35, 2007.

S. Shastri, A. Sharma, V. Mansotra, A. Sharma, A. S. Bhadwal, and M. Kumari, “A Study on Exponential Smoothing Method for Forecasting,” Int. J. Comput. Sci. Eng., vol. 6, no. 4, pp. 482–485, 2018.

S. Kumar Paul, “Determination of exponential smoothing constant to minimize mean square error and mean absolute deviation,” Glob. J. Res. Eng., vol. 11, no. 3, pp. 30–34, 2011.

H. V. Ravinder, “Forecasting With Exponential Smoothing Whats The Right Smoothing Constant?,” Rev. Bus. Inf. Syst., vol. 17, no. 3, pp. 117–126, 2013.

H. G. M. Azu, “New Approach for Determining the Smoothing Constant of a Single Exponential Smoothing Method,” Int. J. Sci. Technol., vol. 3, no. 11, pp. 717–727, 2014.

N. A. Abd Jalil, M. H. Ahmad, and N. Mohamed, “Electricity load demand forecasting using exponential smoothing methods,” World Appl. Sci. J., vol. 22, no. 11, pp. 1540–1543, 2013.

B. K. Khotimah, M. Laili, and B. D. Satoto, “Prediksi Persediaan Ikan Teri Menggunakan Exponential Smoothing Berbasis Ordered Weighted Aggregation,” vol. 1, no. 1, pp. 27–32, 2014.

K. Sukiyono and R. Rosdiana, “Pendugaan Model Peramalan Harga Beras Pada Tingkat Grosir,” J. AGRISEP, vol. 17, no. 1, pp. 23–30, 2018.

A. N. AINI, R. PURBANINGTYAS, and R. D. ADITYO, “Forecasting Sales 3Kg Lpg Using Single Exponential Smoothing Method,” J. Electr. Eng. Comput. Sci. Vol 2 Number 2, Dec 2017, vol. 2, no. 2, pp. 281–286, 2018.

E. Pujiati et al., “Peramalan Dengan Menggunakan Metode Double Exponential Smoothing Dari Brown (Studi Kasus: Indeks Harga Konsumen (IHK) Kota Samarinda) Forecasting Using Double Exponential Smoothing Method Of Brown (Case Study: The Consumer Price Index (CPI) City Samarinda,” J. EKSPONENSIAL, vol. 7, no. 1, 2016.

M. Lutfi, H. Muttaqien, A. Apriliani, H. Zainuddin, and Y. Yuyun, “Application of the Naïve Bayes Algorithm and Simple Exponential Smoothing for Food Commodity Prices Forecasting,” 2019.

S. N. Kane, A. Mishra, and A. K. Dutta, “Preface: International Conference on Recent Trends in Physics (ICRTP 2016),” J. Phys. Conf. Ser., vol. 755, no. 1, 2016.

Z. O. Olaofe, “Wind Energy Predictions of Small-Scale Turbine Output Using Exponential Smoothing and Feed-Forward Neural Network,” Int. J. Energy Eng., vol. 5, pp. 28–42, 2015.

S. Hansun, “A New Approach of Brown’s Double Exponential Smoothing Method in Time Series Analysis,” Balk. J. Electr. Comput. Eng., vol. 4, no. 2, 2016.

P. Auliana, R. Mukhlashin, and J. Nugraha, “Brown ’ S Weighted Exponential Moving Average ( B- Wema ) With Levenberg-Marquardt Optimization To,” no. September, pp. 1744–1749, 2018.

J. Jahring, A. P. Pradani. Nasrum, “Forecasting With Double Exponential Smoothing Brown Method” J. Math Sci., vol. 2, , pp. 35–39, 2016.

E. Ostertagová and O. Ostertag, “The simple exponential smoothing model,” Model. Mech. Mechatron. Syst., no. SEPTEMBER 2011, pp. 380–384, 2011.

Y. Biçen, “Fuzzy tuning approach for adaptive exponential smoothing used in short-term forecasts,” Pamukkale Univ. J. Eng. Sci., vol. 23, no. 1, pp. 88–94, 2017.

M. M. F. Hussain and R. A. Jamel, “Statistical Analysis & Asthmatic Patients in Sulaimaniyah Governorate in the Tuber-Closes,” Int. J. Res. Med. Heal. Sci., vol. 1, no. 2, pp. 24–32, 2013.

F. N. Fauziah and A. Gunaryati, “Comparison forecasting with double exponential smoothing and artificial neural network to predict the price of sugar,” Int. J. Simul. Syst. Sci. Technol., vol. 18, no. 4, pp. 1–8, 2017.

U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J. Phys. Conf. Ser., vol. 930, no. 1, 2017.

T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014.

T. Dielman, “Choosing smoothing parameters for exponential smoothing: Minimizing sums of squared versus sums of absolute errors,” J. Mod. Appl. Stat. Methods, vol. 5, no. 1, pp. 117–128, 2006.

Published
2022-12-29
How to Cite
Hazriani, H., Yuyun, & Razak, M. (2022). A Comparison of the Smoothing Constant Values Among Exponential Smoothing Methods in Commodity Prices Forecasting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(6), 981 - 986. https://doi.org/10.29207/resti.v6i6.4478
Section
Information Systems Engineering Articles