Buzzer Detection on Indonesian Twitter using SVM and Account Property Feature Extension

  • Yuliant sibaroni Telkom University
  • Sri Suryani Prasetiyowati Telkom University
Keywords: Twitter, account, hoax, buzzer, SVM


The rapid use of Twitter social media in recent times has an impact on the faster dissemination of disinformation which is very dangerous to followers. Detection of disinformation is very important to do and can be done manually by conducting in-depth information analysis. But given the huge amount of information, this approach is less effective. Another, more effective approach is to use a machine learning-based approach. Several studies on hoax information detection based on machine learning have been carried out where some studies analyze the content of a tweet and some others analyze hashtags which are the context of a tweet. The feature usually used to analyze hashtag sentiment data is the property feature of the creator's account. The creator accounts of disinformation are called buzzer accounts. This research proposes account property feature expansion of buzzer accounts combined with the SVM classifier which in several previous similar studies has a very good performance to detect the buzzer hashtag. The experimental results show that expanding the proposed feature can increase SVM's performance in detecting hashtag buzzers by more than 24% compared to using the baseline feature, and the average F1 score obtained from the combination of methods is 84%.



Download data is not yet available.


Simon Kemp, “Digital 2021: Indonesia,” 2021.

goodnewsfromindonesia, “Pengguna Facebook Indonesia dalam Bingkai Statistik,” 2021. (accessed Feb. 08, 2022).

S. Preston, A. Anderson, D. J. R. Id, M. P. Shephard, and N. Huhe, “Detecting fake news on Facebook : The role of emotional intelligence,” pp. 1–13, 2021, doi: 10.1371/journal.pone.0246757.

R. Watrianthos, M. Giatman, W. Simatupang, R. Syafriyeti, and N. K. Daulay, “Analisis Sentimen Pembelajaran Campuran Pada Twitter Data Menggunakan Algoritma Naïve Bayes,” Analisis Sentimen Pembelajaran Campuran Pada Twitter Data Menggunakan Algoritma Naïve Bayes, vol. 6, no. 1, pp. 166–170, 2022, doi:

A. J. Panatra, F. B. Chandra, W. Darmawan, H. L. H. S. Warnars, W. H. Utomo, and T. Matsuo, “Buzzer Detection to Maintain Information Neutrality in 2019 Indonesia Presidential Election,” Proc. - 2019 8th Int. Congr. Adv. Appl. Informatics, IIAI-AAI 2019, pp. 873–876, 2019, doi: 10.1109/IIAI-AAI.2019.00177.

E. Ferrara, “Disinformation and social bot operations in the run up to the 2017 French presidential election,” First Monday, vol. 22, no. 8, 2017, doi: 10.5210/fm.v22i8.8005.

Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19,” JURNAL MEDIA INFORMATIKA BUDIDARMAJURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 10, pp. 174–179, 2021, doi: 10.30865/mib.v4i4.2293.

H. Allcott and M. Gentzkow, “Trends in the Diffusion of Misinformation on Social Media,” SAGE J. Res. Polit. Polit., vol. 6, no. 2, pp. 1–13, 2018.

R. Mustika, “Pergeseran Peran Buzzer Ke Dunia Politik Di Media Sosial,” Diakom J. Media dan Komun., vol. 2, no. 2, pp. 144–151, 2019, doi: 10.17933/diakom.v2i2.60.

B. Arianto, “Salah Kaprah Ihwal Buzzer: Analisis Percakapan Warganet di Media Sosial,” J. Ilm. Ilmu Pemerintah., vol. 5, no. 1, pp. 1–20, 2020, doi: 10.14710/jiip.v5i1.7287.

Samsir et al., “Naives Bayes Algorithm for Twitter Sentiment Analysis,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012019, 2021, doi: 10.1088/1742-6596/1933/1/012019

S. Sugiono, “Fenomena Industri Buzzer Di Indonesia: Sebuah Kajian Ekonomi Politik Media,” Commun. J. Ilmu Komun., vol. 4, no. 1, pp. 47–66, 2020, doi: 10.15575/cjik.v4i1.7250.

A. Suciati, A. Wibisono, and P. Mursanto, “Twitter Buzzer Detection for Indonesian Presidential Election,” ICICOS 2019 - 3rd Int. Conf. Informatics Comput. Sci. Accel. Informatics Comput. Res. Smarter Soc. Era Ind. 4.0, Proc., 2019, doi: 10.1109/ICICoS48119.2019.8982529.

S. Bradshaw and P. N. Howard, “The Global Disinformation Order 2019 Global Inventory of Organised Social Media Manipulation,” Univ. Oxford, p. 25, 2019.

Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Detecting automation of Twitter accounts: Are you a human, bot, or cyborg?,” IEEE Trans. Dependable Secur. Comput., vol. 9, no. 6, pp. 811–824, 2012, doi: 10.1109/TDSC.2012.75.

M. Ibrahim, O. Abdillah, A. F. Wicaksono, and M. Adriani, “Buzzer Detection and Sentiment Analysis for Predicting Presidential Election Results in a Twitter Nation,” Proc. - 15th IEEE Int. Conf. Data Min. Work. ICDMW 2015, pp. 1348–1353, 2016, doi: 10.1109/ICDMW.2015.113.

M. T. Juzar and S. Akbar, “Buzzer Detection on Twitter Using Modified Eigenvector Centrality,” Proc. 2018 5th Int. Conf. Data Softw. Eng. ICoDSE 2018, pp. 1–5, 2018, doi: 10.1109/ICODSE.2018.8705788.

C. Juditha, “Buzzer di Media Sosial Pada Pilkada dan Pemilu Indonesia Buzzer in Social Media in Local Elections and Indonesian Elections,” pp. 199–212, 2019.

D. Kotsakos, P. Sakkos, I. Katakis, and D. Gunopulos, “#tag: Meme or event?,” ASONAM 2014 - Proc. 2014 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min., no. Asonam, pp. 391–394, 2014, doi: 10.1109/ASONAM.2014.6921615.

A. M. F. Al Sbou, A. Hussein, B. Talal, and R. A. Rashid, “A Survey of Arabic Text Classification Models,” vol. 8, no. 6, pp. 4352–4355, 2018, doi: 10.11591/ijece.v8i6.pp.4352-4355.

M. R. A. Utomo and Y. Sibaroni, “Text classification of british english and American english using support vector machine,” 2019, doi: 10.1109/ICoICT.2019.8835256.

Y. Sibaroni, D. H. Widyantoro, and M. L. Khodra, “Automatic identification of compare paper relations,” Int. J. Electr. Eng. Informatics, vol. 12, no. 1, pp. 141–154, 2020, doi: 10.15676/ijeei.2020.12.1.12.

E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis,” . Informatics, vol. 8, no. 79, pp. 1–21, 2021.

P. Probst, Anne-Laure, and Bernd Bischl, “Tunability : Importance of Hyperparameters of Machine Learning Algorithms,” J. Mach. Learn. Res., vol. 20, pp. 1–32, 2019.

R. Hossain and D. Timmer, “Machine Learning Model Optimization with Hyper Parameter Tuning Approach,” Glob. J. Comput. Sci. Technol. D Neural Artif. Intell., vol. 21, no. 2, 2021.

S. Wang, L. Dong, and H. Hua, “Parameter optimization of support vector machine based on improved grid algorithm Parameter optimization of support vector machine based on improved grid algorithm,” J. Phys. Conf. Ser., 2020, doi: 10.1088/1742-6596/1693/1/012108.

L. C. Padierna and A. Rojas-dominguez, “Hyper-Parameter Tuning for Support Vector Machines by Estimation of Hyper-Parameter Tuning for Support Vector Machines by Estimation of Distribution Algorithms,” no. December, 2017, doi: 10.1007/978-3-319-47054-2.

M. A. Nanda and A. Maddu, “A Comparison Study of Kernel Functions in the Support Vector Machine and Its Application for Termite Detection,” doi: 10.3390/info9010005.

E. Pusporani, Suhartono, and D. D. Prastyo, “Hybrid multivariate generalized space-time autoregressive artificial neural network models to forecast air pollution data at Surabaya,” AIP Conf. Proc., vol. 2194, 2019, doi: 10.1063/1.5139822.

A. Karatzoglou, D. Meyer, and K. Hornik, “Journal of Statistical Software,” vol. 15, no. 9, 2006.

H. Lee, “ODE-based Epidemic Network Simulation of Viral Hepatitis A and Kernel Support Vector Machine based Vaccination Effect Analysis,” J. Korean Inst. Intell. Syst., no. April, 2020, doi: 10.5391/JKIIS.2020.30.2.106.

How to Cite
Yuliant sibaroni, & Sri Suryani Prasetiyowati. (2022). Buzzer Detection on Indonesian Twitter using SVM and Account Property Feature Extension. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 663 - 669.
Artikel Teknologi Informasi

Most read articles by the same author(s)