The Role of Genetics in Domestic Research on Forestry Issues: A Text Mining Analysis

  • Titis Hutama Syah Sekolah Tinggi Pertanian Kutai Timur
Keywords: data science, forestry issue, genetic diversity


As a megadiverse country, Indonesia has plentiful genetic resources. The interest of domestic researchers in it and its relation to forestry scope is the focus of this paper. The objective is to determine the genetics aspects represented in forestry scholarly articles. Text mining analysis is carried out for the abstract articles, followed by topic modeling and trend analysis. Python libraries were used to conduct this research. Garuda website was the main source of the data collection. Natural language Toolkits (NLTK) were used to retrieve article information from Garuda. Sci-kit learn (SKLearn) of Latent Dirichlet Allocation module was used for topic modeling analysis, and pyLDAVis was used to represent it. SKLearn was also used for trending analysis. After article text retrieval, three topic clusters were found: forest diversity, products, and land use. The topics were scattered in 1966 abstract articles that were found during data retrieval. Article growth showed the quadratic pattern known after regression analysis. The trend showed the rapid growth of topics and scholars' interest, but the number of articles was low compared to the total articles on the Garuda portal.



Download data is not yet available.


] Kementerian Pendidikan Kebudayaan Riset dan Teknologi Republik Indonesia, “SINTA - Science and Technology Index,” Frequently Asked Questions, 2020. (accessed Jun. 27, 2022).

Panduan Akreditasi Jurnal Nasional (ARJUNA). Direktorat Pengelolaan Kekayaan Intelektual Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset dan Teknologi / Badan Riset dan Inovasi Nasional, 2019. Accessed: Jun. 27, 2022. [Online]. Available:

“Garuda - Garba Rujukan Digital,” Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (accessed Jun. 27, 2022).

H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text Mining in Big Data Analytics,” Big Data and Cognitive Computing 2020, Vol. 4, Page 1, vol. 4, no. 1, p. 1, Jan. 2020, doi: 10.3390/BDCC4010001.

H. Else, “How I scraped data from Google Scholar,” Nature, Apr. 2018, doi: 10.1038/D41586-018-04190-5.

“Elsevier Developer Portal.” (accessed Jun. 27, 2022).

M. K. Dobbertin and M. P. Nobis, “Exploring research issues in selected forest journals 1979-2008,” Ann For Sci, vol. 67, no. 8, Dec. 2010, doi: 10.1051/FOREST/2010052.

A. Schober, N. Šimunović, A. Darabant, and T. Stern, “Identifying sustainable forest management research narratives: a text mining approach,”, vol. 37, no. 6, pp. 537–554, Aug. 2018, doi: 10.1080/10549811.2018.1437451.

A. D. Polinko and K. Coupland, “Paradigm shifts in forestry and forest research: a bibliometric analysis1,”, vol. 51, no. 2, pp. 154–162, 2020, doi: 10.1139/CJFR-2020-0311.

M. Zhao, D. Li, and Y. Long, “Forestry big data platform by Knowledge Graph,” Journal of Forestry Research 2020 32:3, vol. 32, no. 3, pp. 1305–1314, Apr. 2020, doi: 10.1007/S11676-020-01130-W.

M. J. Westgate, P. S. Barton, J. C. Pierson, and D. B. Lindenmayer, “Text analysis tools for identification of emerging topics and research gaps in conservation science,” Conservation Biology, vol. 29, no. 6, pp. 1606–1614, Dec. 2015, doi: 10.1111/COBI.12605.

I. Jarić, F. Courchamp, J. Gessner, and D. L. Roberts, “Data mining in conservation research using Latin and vernacular species names,” PeerJ, vol. 2016, no. 7, p. e2202, Jul. 2016, doi: 10.7717/PEERJ.2202/SUPP-2.

E. Latifa, “Access to Genetics Resources in Indonesia: Need Further Legislation?,” Oklahoma Journal of Law and Technology, vol. 11, no. 1, 2015, Accessed: Jun. 26, 2022. [Online]. Available:

K. von Rintelen, E. Arida, and C. Häuser, “A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries,” Research Ideas and Outcomes 3: e20860, vol. 3, pp. e20860-, Sep. 2017, doi: 10.3897/RIO.3.E20860.

T. Geburek and H. Konrad, “Why the Conservation of Forest Genetic Resources Has Not Worked,” Conservation Biology, vol. 22, no. 2, pp. 267–274, Apr. 2008, doi: 10.1111/J.1523-1739.2008.00900.X.

S. Raum, F. Rawlings-Sanaei, and C. Potter, “A web content-based method of stakeholder analysis: The case of forestry in the context of natural resource management,” J Environ Manage, vol. 300, p. 113733, Dec. 2021, doi: 10.1016/J.JENVMAN.2021.113733.

L. Richardson, “beautifulsoup4 · PyPI.” (accessed Jun. 28, 2022).

S. Bird, E. Klein, and Edward Loper, Natural Language Processing with Python: Analyzing Text with the Natural ... - Steven Bird, Ewan Klein, Edward Loper - Google Buku. Accessed: Jun. 28, 2022. [Online]. Available:

H. A. Robbani, “Sastrawi · PyPI.” 2021. Accessed: Oct. 26, 2021. [Online]. Available:

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003, Accessed: Jun. 29, 2022. [Online]. Available:

F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

C. Sievert, K. S.-P. of the workshop on interactive, and undefined 2014, “LDAvis: A method for visualizing and interpreting topics,”, pp. 79–86, 1999, Accessed: Jul. 01, 2022. [Online]. Available:

M. D. Hoffman, D. M. Blei, and F. Bach, “sklearn.decomposition.LatentDirichletAllocation — scikit-learn 1.1.1 documentation,” 2010. (accessed Jul. 01, 2022).

B. Mabey, “pyLDAvis — pyLDAvis 2.1.2 documentation,” 2015. (accessed Jul. 01, 2022).

I. F. Aguillo, J. L. Ortega, M. Fernández, and A. M. Utrilla, “Indicators for a webometric ranking of open access repositories,” Scientometrics, vol. 82, no. 3, pp. 477–486, Feb. 2010, doi: 10.1007/S11192-010-0183-Y.

G. Ratnasari and R. Nurislaminingsih, “Pengaruh Kebijakan Publikasi Karya Ilmiah Di E-Journal Terhadap Peningkatan Motivasi Menulis Karya Ilmiah Mahasiswa Ilmu Perpustakaan Fakultas Ilmu,” Jurnal Ilmu Perpustakaan, vol. 6, no. 1, pp. 201–210, 2017, Accessed: Jul. 03, 2022. [Online]. Available:

J. Chuang, C. D. Manning, and J. Heer, “Termite: Visualization techniques for assessing textual topic models,” Proceedings of the Workshop on Advanced Visual Interfaces AVI, pp. 74–77, 2012, doi: 10.1145/2254556.2254572.

N. H. Timm, Applied multivariate analysis. Springer, 2002.

V. Ramanatha Rao and T. Hodgkin, “Genetic diversity and conservation and utilization of plant genetic resources,” Plant Cell Tissue Organ Cult, vol. 68, no. 1, pp. 1–19, 2002, doi: 10.1023/A:1013359015812.

S. L. Maxwell, R. A. Fuller, T. M. Brooks, and J. E. M. Watson, “Biodiversity: The ravages of guns, nets and bulldozers,” Nature, vol. 536, no. 7615, pp. 143–145, Aug. 2016, doi: 10.1038/536143A.

L. Juniyanti, H. Purnomo, H. Kartodihardjo, and L. B. Prasetyo, “Understanding the driving forces and actors of land change due to forestry and agricultural practices in sumatra and kalimantan: A systematic review,” Land (Basel), vol. 10, no. 5, May 2021, doi: 10.3390/LAND10050463.

Food Agriculture Organization of the United Nations, Harvesting Nature’s Diversity: World Food Day, 16 October. FAO, 1993.

J. G. Eisenhauer, “Regression through the Origin,” Teach Stat, vol. 25, no. 3, pp. 76–80, Sep. 2003, doi: 10.1111/1467-9639.00136.

C. van Oosterhout, “Conservation genetics: 50 Years and counting,” Conserv Lett, vol. 14, no. 2, p. e12789, Mar. 2021, doi: 10.1111/CONL.12789.

How to Cite
Titis Hutama Syah. (2022). The Role of Genetics in Domestic Research on Forestry Issues: A Text Mining Analysis. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(6), 1006 - 1013.
Artikel Rekayasa Sistem Informasi