K-Means Clustering Algorithm Approach in Clustering Data on Cocoa Production Results in the Sumatra Region
Abstract
Cocoa agricultural production in Indonesia is currently very low while demand continues to increase every year, so it is very important to build a model that can categorize cocoa farming data. The main objective of this research is to analyze agricultural data using data mining techniques that specifically use the K-Means Clustering algorithm, and Gaussian Mixture Models. In this research, we used quantitative research because it measure number-based data. The results of cocoa production so far still depend on land area, then the number of cocoa trees has a significant effect on the amount of production so it is very important for the government and researchers to develop technologies that can increase cocoa production yields where the demand for cocoa is currently very high in demand worldwide because it can classify the cocoa quality from good quality to poor quality. Based on testing the K-Means Clustering and Gaussian Mixture Model algorithms on data on cocoa production in four provinces, namely North Sumatra, West Sumatra, Lampung and Aceh which were optimized by the Silhouette method, it produced cluster values of 2, 3 and 4. second with a value of 59.8%.
Downloads
References
I. M. Fahmid, H. Harun, M. M. Fahmid, Saadah, and N. Busthanul, “Competitiveness, production, and productivity of cocoa in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 157, no. 1, 2018, doi: 10.1088/1755-1315/157/1/012067.
S. G. Carbajal, “Customer segmentation through path reconstruction,” Sensors, vol. 21, no. 6, pp. 1–17, Mar. 2021, doi: 10.3390/s21062007.
J. Majumdar, S. Naraseeyappa, and S. Ankalaki, “Analysis of agriculture data using data mining techniques: application of big data,” J. Big Data, vol. 4, no. 1, 2017, doi: 10.1186/s40537-017-0077-4.
A. Camero, G. Luque, Y. Bravo, and E. Alba, “Customer segmentation based on the electricity demand signature: The andalusian case,” Energies, vol. 11, no. 7, p. 1788, Jul. 2018, doi: 10.3390/en11071788.
A. Savic, G. Bjelobaba, S. Janicijevic, and H. Stefanovic, “An Application of PCA Based K-Means Clustering for Customer Segmentation in One Luxury Goods Company,” UBT Int. Conf., 2019: https://knowledgecenter.ubt-uni.net/conference/2019/events/189.
R. Watrianthos, R. Handayani, A. F. P. Akhir, A. Ambiyar, and U. Verawardina, “Penerapan Algoritma K-Means Pada Pemetaan Kemampuan Penggunaan Teknologi InformasiRemaja dan Dewasadi Indonesia,” Journal of Computer System and Informatics (JoSYC) , vol. 4, no. 1, Nov. 2022.
M. P. Fernandes, J. L. Viegas, S. M. Vieira, and J. M. C. Sousa, “Segmentation of residential gas consumers using clustering analysis,” Energies, vol. 10, no. 12, p. 2047, Dec. 2017, doi: 10.3390/en10122047.
M. R. Ridlo, S. Defiyanti, and A. Primajaya, “Implementasi Algoritme K-Means Untuk Pemetaan Produktivitas Panen Padi Di Kabupaten Karawang,” Citee 2017, pp. 426–433, 2017.
D. F. Pasaribu, I. S. Damanik, E. Irawan, Suhada, and H. S. Tambunan, “Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 11–20, 2021, doi: 10.37148/bios.v2i1.17.
M. A. W. K. MURTI, “Penerapan Metode K-Means Clustering Untuk Mengelompokan Potensi Produksi Buah – Buahan Di Provinsi Daerah Istimewa Yogyakarta,” Skripsi, 2017.
Hazman, A., Elektro, F. T., & Telkom, U. (2019). Penerapan Metode K-Means Clustering Untuk Mengelompokkan Data Pelabuhan Dan Bongkar Muat Barang Di Indonesia Application of K-Means Clustering Method for Grouping Port and Unload Loading Goods Data in Indonesia. 6(1), 1450–1454.
G. Maciejewski, S. Mokrysz, and Ł. Wróblewski, “Segmentation of coffee consumers using sustainable values: Cluster analysis on the Polish coffee market,” Sustain., vol. 11, no. 3, pp. 1–20, 2019, doi: 10.3390/su11030613.
Hadinata, E. (2016). Simulasi Sistem Pendukung Keputusan Menggunakan Metode Klustering Algoritma Fuzzy C-Means. Jurnal Ilmiah Media Sisfo, 10(1), 401–409. http://ejournal.stikom.db.ac.id/index.php/mediasisfo/article/view/186.
Stefanović, H., Veselinović, R., Bjelobaba, G., & Savić, A. (2018). An Adaptive Car Number Plate Image Segmentation Using K-Means Clustering. 74–78. https://doi.org/10.15308/sinteza-2018-74-78
Seta, P. T., & Hartomo, K. D. (2020). Mapping Land Suitability for Sugar Cane Production Using K-means Algorithm with Leaflets Library to Support Food Sovereignty in Central Java. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 6(1), 15–25. https://doi.org/10.23917/khif.v6i1.9027
Priambodo, Y. A., & Prasetyo, S. Y. J. (2018). Pemetaan Penyebaran Guru di Provinsi Banten dengan Menggunakan Metode Spatial Clustering K-Means (Studi kasus : Wilayah Provinsi Banten). Indonesian Journal of Computing and Modeling, 1(1), 18–27. https://doi.org/10.24246/j.icm.2018.v1.i1.p18-27.
Sari, B. N., & Primajaya, A. (2019). Penerapan Clustering Dbscan Untuk Pertanian Padi Di Kabupaten Karawang. Jurnal Informatika Dan Komputer, 4(1), 28–34. www.mapcoordinates.net/en.
Tamaela, J., Sediyono, E., & Setiawan, A. (2017). Cluster Analysis Menggunakan Algoritma Fuzzy C-means dan K-means Untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara. Jurnal Buana Informatika, 8(3), 151–160. https://doi.org/10.24002/jbi.v8i3.1317.
Alkhairi, P., & Windarto, A. P. (2019). Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara. Seminar Nasional Teknologi Komputer & Sains, 762–767.
Arora, P., Deepali, & Varshney, S. (2016). Analysis of K-Means and K-Medoids Algorithm for Big Data. Physics Procedia, 78(December 2015), 507–512. https://doi.org/10.1016/j.procs.2016.02.095.
Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226–235. https://doi.org/10.3390/j2020016.
Kirana, M. C., & Etisa, L. M. (2017). Penerapan Mixture Model Kepada Aplikasi Helpdesk Berbasis Web. NJCA (Nusantara Journal of Computers and Its Applications), 2(1),17–23. https://doi.org/10.36564/njca.v2i1.26.
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;