Detecting Diseases on Clove Leaves Using GLCM and Clustering K-Means

  • Mila Jumarlis STAIN MAJENE
  • Mirfan Universitas Handayani Makassar
Keywords: K-Means, GLCM, Image Processing, Clove Plants, Diagnosis

Abstract

The detection of disease in clove plant leaves is generally carried out by diagnosing the symptoms that appear on clove plants. This diagnosis is conducted by clove farmers only by relying on their experience or even having to seek information from other clove farmers. This is because the agricultural sector has no disease detection system for clove leaves by utilizing digital image processing technology to detect diseases in clove leaves. In this study, the researchers applied two methods to make it easier for clove farmers to diagnose diseases in their clove plants. Those methods were the imaging system using Gray Level Co-Occurrence Matrix (GLCM) and disease clustering using the K-Means algorithm. The objective of this study was to design and build image pattern recognition by utilizing 4 features of the GLCM: energy, entropy, homogeneity, and contrast. These 4 features were used to obtain the extraction value from an image. The outcomes were then used to cluster the clove plant diseases using the K-Means method. In making the software, the researchers used Javascript, HTML, CSS, PHP, and MySql to create a database. The output in this study was an information system application that provides disease-type clustering using the K-Means algorithm. The results of the GLCM concerning extracting images of clove plant leaves affected by disease indicated that the created system can be used to help clove farmers in diagnosing what diseases are infecting their plants by only uploading photos from affected leaves of the clove plant. Furthermore, the results of the K-Means calculation on the examined data showed several categories of Anthracnose leaf spot diseases. In addition, sample number #40 was included in cluster 2 status, in which the average values for energy, entropy, homogeneity, and contrast were 0.583, 0.175, 0.939, and 0.175, respectively.

Downloads

Download data is not yet available.

References

D. A. Bimantoro dan S. Uyun, “Pengaruh Penggunaan Information Gain untuk Seleksi Fitur Citra Tanah dalam Rangka Menilai Kesesuaian Lahan pada Tanaman Cengkeh,” JISKA J. Inform. Sunan Kalijaga, vol. 2, no. 1, hlm. 42–52, Agu 2017, doi: 10.14421/jiska.2017.21-06.

Y. Rasud, “In Vitro Callus Induction from Clove (Syzigium aromaticum L.) Leaves on Medium Containing Various Auxin Concentrations,” J. Ilmu Pertan. Indones., vol. 25, no. 1, hlm. 67–72, Jan 2020, doi: 10.18343/jipi.25.1.67.

Badan Pusat Statistik Kabupaten Kepulauan Selayar, “Statistik Pertanian Non Tanaman Pangan Kabupaten Kepulauan Selayar Tahun 2018,” Badan Pusat Statistik Kabupaten Kepulauan Selayar, 2019. https://selayarkab.bps.go.id/publication/2019/10/25/e1af1d6d0563d921cc41bfdd/statistik-pertanian-non-tanaman-pangan-kabupaten-kepulauan-selayar-tahun-2018.html

M. Sofwan, A. H. Hamid, dan I. A. Kadir, “Motivasi Petani, Faktor Pendorong dan Faktor Penghambat dalam Budidaya Tanaman Cengkeh Di Mukim Lampuuk Kecamatan Lhoknga Kabupaten Aceh Besar,” J. Ilm. Mhs. Pertan., vol. 3, no. 4, hlm. 355–367, Nov 2018, doi: 10.17969/jimfp.v3i4.8765.

M. K. Amrulloh, H. S. Addy, dan W. S. Wahyuni, “Karakterisasi fisiologis dan biokimia penyebab penyakit bakteri pembuluh kayu pada tanaman cengkeh (Syzygium aromaticum L.) di PT Tirta Harapan,” vol. 2, no. 1, hlm. 1–7, Feb 2021, doi: 10.19184/jptt.v2i1.17919.

A. V. Efrilla dkk., “Klasifikasi Penyakit Pada Daun Stroberi Menggunakan K-Means Clustering dan Jaringan Syaraf Tiruan,” J. Keteknikan Pertan. Trop. Dan Biosist., vol. 8, no. 2, hlm. 161–170, Agu 2020, doi: 10.21776/ub.jkptb.2020.008.02.06.

N. Sivi Anisa dan T. Herdian Andika, “Sistem Identifikasi Citra Daun Berbasis Segmentasi Dengan Menggunakan Metode K-Means Clustering,” Aisyah J. Inform. Electr. Eng. AJIEE, vol. 2, no. 1, hlm. 9–17, Feb 2020, doi: 10.30604/jti.v2i1.22.

R. H. Ariesdianto, Z. E. Fitri, A. Madjid, dan A. M. N. Imron, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan K-Nearest Neighbor,” J. Ilmu Komput. Dan Inform., vol. 1, no. 2, hlm. 133–140, Nov 2021, doi: 10.54082/jiki.14.

N. A. Haris, “Kombinasi Ciri Bentuk dan Ciri Tekstur Untuk Identifikasi Penyakit Pada Tanaman Padi,” JATISI J. Tek. Inform. Dan Sist. Inf., vol. 7, no. 2, hlm. 237–250, Agu 2020, doi: 10.35957/jatisi.v7i2.239.

Y. I. Nurhasanah, “Sistem Pengenalan Jenis Kanker Melanoma pada Citra Menggunakan Gray Level Cooccurrence Matrices (GLCM) dan K-Nearest Neighbor (KNN) Classifier,” Mindjournal, vol. 5, no. 1, hlm. 66–80, 2020, doi: 10.26760/mindjournal.v5i1.66-80.

S. A. Hantoush Alrubaie dan A. H. Hameed, “Dynamic Weights Equations for Converting Grayscale Image to RGB Image,” J. Univ. BABYLON Pure Appl. Sci., vol. 26, no. 8, hlm. 122–129, Okt 2018, doi: 10.29196/jubpas.v26i8.1677.

A. Septiarini, Rizqi Saputra, Andi Tejawati, dan Masna Wati, “Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 5, hlm. 927–935, Okt 2021, doi: 10.29207/resti.v5i5.3435.

K. Mahesa, B. Sugiantoro, dan Y. Prayudi, “Pemanfaatan Metode DNA Kriptografi Dalam Meningkatkan Keamanan Citra Digital,” vol. 07, no. 02, hlm. 108–113, Sep 2019, doi: 10.33884/jif.v7i02.1356.

P. N. Andono dan E. H. Rachmawanto, “Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 1, hlm. 1–9, Feb 2021, doi: 10.29207/resti.v5i1.2615.

W. Wiliawanto, M. Bernard, P. Akbar, dan A. I. Sugandi, “Penerapan Strategi Pembelajaran Aktif Question Student Have Untuk Meningkatkan Kemampuan Berpikir Kritis Matematik Siswa SMK,” J. Cendekia J. Pendidik. Mat., vol. 3, no. 1, hlm. 139–148, Mei 2019, doi: 10.31004/cendekia.v3i1.86.

Z. Y. Lamasigi, “DCT Untuk Ekstraksi Fitur Berbasis GLCM Pada Identifikasi Batik Menggunakan K-NN,” Jambura J. Electr. Electron. Eng., vol. 3, no. 1, hlm. 1–6, Jan 2021, doi: 10.37905/jjeee.v3i1.7113.

L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. DKI Jakarta Dengan K-Means,” JISKA J. Inform. Sunan Kalijaga, vol. 2, no. 3, hlm. 167, Mar 2018, doi: 10.14421/jiska.2018.23-06.

S. Rustam, H. A. Santoso, dan C. Supriyanto, “Optimasi K-Means Clustering Untuk Identifikasi Daerah Endemik Penyakit Menular Dengan Algoritma Particle Swarm Optimization Di Kota Semarang,” Ilk. J. Ilm., vol. 10, no. 3, hlm. 251–259, Des 2018, doi: 10.33096/ilkom.v10i3.342.251-259.

Published
2022-08-30
How to Cite
Jumarlis, M., & Mirfan. (2022). Detecting Diseases on Clove Leaves Using GLCM and Clustering K-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 624 - 631. https://doi.org/10.29207/resti.v6i4.4033
Section
Artikel Rekayasa Sistem Informasi