Classification of Rupiah to Help Blind with The Convolutional Neural Network Method
Abstract
Currency is an item humans require as a medium of exchange in transactions, including those with vision impairments. It can be challenging for certain blind people to identify currencies. This research aimed to help blind people identify nominal currency when in the transaction. Deep Learning with the CNN algorithm and preprocessing with a sequential model were used in this research. This algorithm is modeled as neurons in the human brain that communicate and learn patterns. Data collecting, preprocessing, testing, and evaluation are this research stage. Six hundred eighty-one datasets are used, consisting of IDR 50.000, IDR 75.000, and IDR 100.000. Model testing was carried out with different iterations of 5, 10, 15, and 20 epochs. Different epoch values will affect the time it takes the model to learn, but the length of the learning process will result in more accurate models. The highest result obtained from all epoch tests is 100%. The class prediction results for the 69 test data show that they can be predicted based on the actual class, indicating that the model is adequate. The results of this classification might be used to construct a smartphone app that would assist visually challenged people in recognizing the nominals.
Downloads
References
“Sistem Informasi Management Penyandang Disabilitas,” Kementerian Sosial RI, 2021. https://simpd.kemensos.go.id/ (diakses Des 07, 2021).
“Siapa Tunanetra?,” Pertuni. https://pertuni.or.id/ (diakses Des 07, 2021).
H. Hafiar, Y. Setiyanti, P. Subekti, dan A. Sani, “Blind Code Pada Uang Kertas Rupiah Pesan Komunikasi Dan Komunikasi Pesan Kepada Publik Disabilitas Netra,” J. KAWISTARA, vol. 10, no. 3, hal. 328–342, 2020.
I. I. Praditya, “Uang Rupiah Baru Ramah buat Tunanetra,” Liputan6.com, 2016. https://www.liputan6.com/bisnis (diakses Des 07, 2021).
R. A. Simanjuntak, “Pengalaman Sedih Tunanetra, Ditipu dengan Nominal Uang Tak Sesuai,” SINDONEWS.com, 2018. https://nasional.sindonews.com (diakses Des 07, 2021).
M. Trisyuliono, “Kisah Rukiah Penjual Kerupuk Tunanetra yang Sering Ditipu Pembeli,” TribunJakarta.com, 2018. https://jakarta.tribunnews.com (diakses Des 07, 2021).
R. Umar, I. Riadi, dan Miladiah, “Sistem Identifikasi Keaslian Uang Kertas Rupiah Menggunakan Metode K-Means Clustering,” Techno.Com, vol. 17, no. 2, hal. 179–185, 2018, doi: 10.33633/tc.v17i2.1681.
Miladiah, R. Umar, dan I. Riadi, “Implementasi Local Binary Pattern untuk mendeteksi keaslian Mata Uang Rupiah,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, hal. 197–201, 2019.
F. H. Sekarani, Jayanta, dan N. Chamidah, “Mengenali Keaslian Mata Uang Kertas Rupiah Dengan Penerapan Metode Support Vector Machine,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2020, hal. 574–584.
A. R. Pratama, M. Mustajib, dan A. Nugroho, “Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor,” J. Eksplora Inform., vol. 9, no. 2, hal. 163–172, 2020, doi: 10.30864/eksplora.v9i2.336.
A. Priadana dan A. W. Murdiyanto, “Metode SURF dan FLANN untuk Identifikasi Nominal Uang Kertas Rupiah Tahun Emisi 2016 pada Variasi Rotasi,” J. Teknol. dan Sist. Komput., vol. 7, no. 1, hal. 19–24, 2019, doi: 10.14710/jtsiskom.7.1.2019.19-24.
Birowo, “Pengolahan Citra Untuk Pengenalan Nilai Nominal Pada Mata Uang Kertas Dengan Metode EigenFace,” J. Inov. dan Sains Tek. Elektro, vol. 1, no. 1, hal. 20–27, 2020.
S. Naresh Kumar, G. Singal, S. Sirikonda, dan R. Nethravathi, “A Novel Approach for Detection of Counterfeit Indian Currency Notes Using Deep Convolutional Neural Network,” in IOP Conference Series: Materials Science and Engineering, 2020, hal. 1–11, doi: 10.1088/1757-899X/981/2/022018.
K. Kamble, A. Bhansali, P. Satalgaonkar, dan S. Alagundgi, “Counterfeit Currency Detection using Deep Convolutional Neural Network,” in 2019 IEEE Pune Section International Conference, PuneCon 2019, 2019, hal. 31–34, doi: 10.1109/PuneCon46936.2019.9105683.
N. Ahmed, S. S. K. Sneha Shree, S. Vasudha, Y. K. S. Yashaswini, dan S. A. Ahmed, “Indian Currency Detection Using Image Recognition Technique,” Proc. - 2021 Int. Conf. Des. Innov. 3Cs Comput. Commun. Control. ICDI3C 2021, hal. 211–215, 2021, doi: 10.1109/ICDI3C53598.2021.00050.
P. Dhapare, A. Agarwal, dan D. Doshi, “Detection of Counterfeit Currency using Image Processing Techniques,” in 2019 IEEE 5th International Conference for Convergence in Technology, I2CT 2019, 2019, hal. 1–5, doi: 10.1109/I2CT45611.2019.9033740.
A. Upadhyaya, V. Shokeen, dan G. Srivastava, “Analysis of counterfeit currency detection techniques for classification model,” in 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, 2018, hal. 1–6, doi: 10.1109/CCAA.2018.8777704.
P. Dhar, M. B. U. Chowdhury, dan T. Biswas, “Paper Currency Detection System Based on Combined SURF and LBP Features,” in 2018 International Conference on Innovations in Science, Engineering and Technology, ICISET 2018, 2018, hal. 27–30, doi: 10.1109/ICISET.2018.8745646.
M. Jadhav, Y. Sharma, dan G. M., “Forged Multinational Currency Identification and Detection System using Deep Learning Algorithm,” Int. J. Comput. Appl., vol. 177, no. 44, hal. 36–40, 2020, doi: 10.5120/ijca2020919970.
M. Sarfraz, A. Bux Sargano, dan N. Ul Haq, “An intelligent system for paper currency verification using support vector machines,” Sci. Iran., vol. 26, no. 1, hal. 59–71, 2019, doi: 10.24200/sci.2018.21194.
A. Kulkarni, P. Kedar, A. Pupala, dan P. Shingane, “Original vs Counterfeit Indian Currency Detection,” ITM Web Conf., vol. 32, hal. 03047, 2020, doi: 10.1051/itmconf/20203203047.
R. C. Gonzalez dan R. E. Woods, Digital Image Processing Third Edition, 3rd ed. New Jersey, USA: Pearson Prentice Hall, 2008.
J. W. G. Putra, Pengenalan Konsep Pembelajaran Mesin dan Deep Learning, 1.4. Tokyo, 2020.
“Teknologi Artificial Intelligence untuk Administrasi Perpajakan Masa Depan,” Wellcode.IO, 2019. https://insight.wellcode.io/ (diakses Des 25, 2021).
I. F. Alam, M. I. Sarita, dan A. M. Sajiah, “Implementasi Deep Learning dengan Metode Convolutional Neural Network untuk Identifikasi Objek secara Real Time Berbasis Android,” semanTIK, vol. 2, no. 5, hal. 237–244, 2020, doi: 10.5281/zenodo.3459374.
K. Fukushima, “Neocognitron: A self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biol. Cybern., vol. 36, no. 4, hal. 193–202, 1980, doi: 10.1007/BF00344251.
I. W. S. E. P, A. Y. Wijaya, dan R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.
J. Xu, Y. Zhang, dan D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, hal. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;