Pemantauan Physical Distance Pada Area Umum Menggunakan YOLO Tiny V3

Physical Distance Monitoring In Public Area Using YOLO Tiny V3

  • Mohammad Chasrun Hasani Universitas Muhammadiyah Malang
  • Fadhila Milenasari Universitas Muhammadiyah Malang
  • Novendra Setyawan Universitas Muhammadiyah Malang
Keywords: Coronavirus, Covid-19, Deep Learning, You Only Look Once, YOLO

Abstract

Coronavirus disease in 2019 (Covid-19) is a phenomenon that become to the world concern because almost all countries experience the outbreak. One of attention to preventing the spread of Covid-19 is the physical distance in public areas. This study proposes human detection in public spaces by using image processing. The application of physical distance is intended to monitor the distance between people in public places. In this study, a human detection system is done by using the YOLO Tiny V3 method and the Euclidean algorithm to be developed to detect distances between humans. There are several stages in the research process: data collection, data preprocessing, data training, and physical distance detection. The system that has been designed can detect by getting an accuracy result of 78.43% for detecting human objects and an accuracy result of 87.82% for detecting distances between humans.

Downloads

Download data is not yet available.

References

WHO, “COVID-19 Weekly Epidemiological Update,” 2021.

Y. Liu, A. A. Gayle, A. Wilder-Smith, and J. Rocklöv, “The reproductive number of COVID-19 is higher compared to SARS coronavirus,” J. Travel Med., 2020, doi: 10.1093/jtm/taaa021.

Yuliana, “Corona Virus diseases (Covid-19); Sebuah Tinjauan Literatur,” Wellness and Healthy Magazine, vol. 2, no. 1, pp. 187–192, 2020.

N. Setyawan, T. S. N. P. Putri, M. Al Fikih, and N. Kasan, “Comparative Study of CNN and YOLOv3 in Public Health Face Mask Detection,” in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2021, pp. 354–358, doi: 10.23919/EECSI53397.2021.9624247.

N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object detection of omnidirectional vision using PSO-neural network for soccer robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121, doi: 10.1109/EECSI.2018.8752833.

N. A. Mardhiyah and N. Setyawan, “Pengenalan Posisi Multi Objek Menggunakan Neural Network dan Scan Lines Pada Robot Sepak Bola,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2019, no. 5, pp. 58–64, doi: 10.22219/sentra.v0i4.2311.

B. Chethan Kumar, R. Punitha, and Mohana, “YOLOv3 and YOLOv4: Multiple object detection for surveillance applications,” Proc. 3rd Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2020, no. Icssit, pp. 1316–1321, 2020, doi: 10.1109/ICSSIT48917.2020.9214094.

T. S. N. P. Putri, M. Al Fikih, and N. Setyawan, “Face Mask Detection Covid-19 Using Convolutional Neural Network (Cnn),” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2021, no. 6, pp. 27–32, doi: 10.22219/sentra.v0i6.3801.

F. Mileanasari, F. Anisa, M. S. Abdillah, and N. Setyawan, “Monitoring Of Physical Distance For Covid-19 Public Health Using You Only Look Once,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2021, no. 6, pp. 33–38, doi: 10.22219/sentra.v0i6.3802.

H. Y. Kristian, “Deteksi Dan Penghitungan Manusia Pada Video Pengunjung Instansi Pemerintah Di Tarakan Menggunakan Metode Histogram of Oriented Gradients,” Semin. Nas. “Inovasi dalam Desain dan Teknol. - IDeaTech 2015, pp. 197–204, 2015.

D. H. Fathoni, “Rancang bangun sistem smart cctv untuk efektivitas energi berbasis yolo cnn dan android di laboratorium otomasi ppns,” PPNS, 2019.

F. Apriliansyah, I. Fitri, and A. Iskandar, “Detection of Militia Object in Libya by Using YOLO Transfer Learning,” in Jurnal Teknologi & Manajemen Informatika, 2020, vol. 6, no. 1, pp. 35–43, doi: 10.26905/jtmi.v6i1.4025.

O. E. Karlina and D. Indarti, “Pengenalan Objek Makanan Cepat Saji Pada Video Dan Real Time Webcam Menggunakan Metode You Look Only Once (Yolo),” J. Ilm. Inform. Komput., vol. 24, no. 3, pp. 199–208, 2019, doi: 10.35760/ik.2019.v24i3.2362.

N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques,” arXiv, pp. 1–10, 2020.

S. Jupiyandi et al., “Pengembangan Deteksi Citra Mobil Untuk Mengetahui Jumlah Tempat Parkir Menggunakan Cuda Dan Modified Yolo Development of Car Image Detection To Find Out the Number of Parking Space Using Cuda and Modified Yolo,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 413–419, 2019, doi: 10.25126/jtiik.201961275.

J. Pardede, D. B. Utami, and A. C. Rochman, “Implementasi ‘Principal Component Analysis - Scale Invariant Feature Transform’ Pada Content Based Image Retrieval,” J. Tek. Inform. dan Sist. Inf., vol. 3, no. 3, pp. 565–574, 2017, doi: 10.28932/jutisi.v3i3.690.

Published
2022-02-27
How to Cite
Mohammad Chasrun Hasani, Fadhila Milenasari, & Setyawan, N. (2022). Pemantauan Physical Distance Pada Area Umum Menggunakan YOLO Tiny V3. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 146 - 152. https://doi.org/10.29207/resti.v6i1.3808
Section
Information Systems Engineering Articles