Pemetaan Pelanggan dengan LRFM dan Two Stage Clustering untuk Memenuhi Strategi Pengelolaan
Customer Mapping with LRFM and Two-Stage Clustering to Fulfill Management Strategy
Abstract
Maibus is a company of transportation services located in Bali. Transaction data that is owned has not been managed properly. This results in data accumulation and only as a turnover calculation, so LRFM and clustering methods are needed to assist the calculation and processing data in fulfilling customer management strategies. The research was conducted by collecting and understanding data, preprocessing, applying LRFM (Length,Recency,Frequency,Monetary), normalizing LRFM, evaluating the number of clusters with Davies Bouldin Index (DBI), clustering with K-Means, and analyzing cluster results. The data used is transaction data from January 2017 to December 2018 with a total of 14.292 data. The clustering method with the K-means algorithm helps in mapping customers based on transaction data. DBI was used to determine the optimal number of clusters and LRFM used to test the determination of variables in determining customer behavior and loyalty. The results of testing 7.193 invoice using 5 clusters with DBI value is 0.135. The result of customers in cluster 0,2,4 are new customer groups with the proposed strategy is enforced strategy, while the customer in cluster 1 and 3 are lost customers with the proposed strategy is let-go strategy that refers to the customer value and customer loyalty matrix.
Downloads
References
P. Wahyu Adityo, “Sepanjang 2019, Kunjungan Wisman ke Bali dari Sejumlah Negara Meningka,” 10/10/2019, 2019. https://travel.kompas.com/read/2019/10/10/211500427/sepanjang-2019-kunjungan-wisman-ke-bali-dari-sejumlah-negara-meningkat. (diakses Jul 03, 2021).
“Maibus.” https://www.maibustransport.com/ (diakses Jun 30, 2021).
Y. O. Rahmawati, A. Kusniawati, dan I. Setiawan, “Pengaruh Customer Relationship Management dan Kualitas Pelayanan Terhadap Lotyalitas Konsumen Sepeda Motor Yamaha (Studi pada Konsumen Bahana Ciamis),” Bus. Manag. Entrep. J., vol. 1, no. 4, hal. 102–115, 2019.
S. Eka, “Segmentasi Pelanggan Menggunakan Two Stage Clustering dan LRFM Model pada Divisi Marketing PT . XYZ untuk Mendukung Strategi Pengelolaan Pelanggan,” hal. 1–7, 2011.
T. Hardiani, S. Sulistyo, dan R. Hartanto, “Kajian Data Mining Customer Relationship Management pada Lembaga Keuangan Mikro,” J. Sist. Inf. Bisnis, vol. 4, no. 3, hal. 181–187, 2014, doi: 10.21456/vol4iss3pp181-186.
M. F. Mulya, N. Rismawati, dan A. R. Rizky, “Analisis Dan Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan Pada Kantin Universitas Tanri Abeng,” Fakt. Exacta, vol. 12, no. 3, hal. 210–218, 2019, doi: 10.30998/faktorexacta.v12i3.4541.
Y. H. Chrisnanto dan A. Kanianingsih, “Pengelompokan Ekuitas Pelanggan Berbasis Recency Frequency Monetary (Rfm) Menggunakan K-Means Clustering,” Semin. Nas. Teknol. Inf. dan Komun. 2019 (SENTIKA 2019), vol. 2019, no. Sentika, hal. 13–14, 2019, [Daring]. Tersedia pada: https://fti.uajy.ac.id/sentika/publikasi/makalah/2019/1.pdf
D. P. Hidayatullah, R. I. Rokhmawati, dan A. R. Perdanakusuma, “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan ( Studi Pada Maninjau Center Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, hal. 2406–2415, 2018.
S. Monalisa, “Klusterisasi Customer Lifetime Value dengan Model LRFM menggunakan Algoritma K-Means,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, hal. 247, 2018, doi: 10.25126/jtiik.201852690.
F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, Fachrudin, dan T. M. A. Aziz, “Segmentation model of customer lifetime value in Small and Medium Enterprise (SMEs) using K-Means Clustering and LRFM model,” Int. J. Integr. Eng., vol. 11, no. 3, hal. 169–180, 2019, doi: 10.30880/ijie.2019.11.03.018.
F. Hadi, M. Mustakim, D. O. Rahmadia, F. H. Nugraha, N. P. Bulan, dan S. Monalisa, “Penerapan K-Means Clustering Berdasarkan RFM Mofek Sebagai Pemetaan dan Pendukung Strategi Pengelolaan Pelanggan (Studi Kasus: PT. Herbal Penawar Alwahidah Indonesia Pekanbaru),” J. Sains dan Teknol. Ind., vol. 15, no. 1, hal. 69–76, 2017.
B. Rahmat C.T.I. et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,” Semin. Nas. Ris. Kuantitatif Terap. 2017, no. April, hal. 58–60, 2017.
M. T. Dharmawan, N. Y. Setiawan, dan F. A. Bachtiar, “Segmentasi Pelanggan Menggunakan Metode Fuzzy C-Means Clustering Berdasarkan LRFM Model Pada Toko Sepatu ( Studi Kasus : Ride Inc Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, hal. 1978–1985, 2019.
I. D. A. A. Y. Primandari, I. K. G. D. Putra, dan I. M. Sukarsa, “Customer Segmentation Using Particle Swarm Optimization and K-Means Algorithm,” Int. J. Digit. Content Technol. its Appl., vol. 10, no. 4, hal. 22–28, 2016.
N. P. P. Yuliari, I. K. G. D. Putra, dan N. K. D. Rusjayanti, “Customer segmentation through fuzzy C-means and fuzzy RFM method,” J. Theor. Appl. Inf. Technol., vol. 78, no. 3, hal. 380–385, 2015.
D. A. Nasution, H. H. Khotimah, dan N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, hal. 78, 2019, doi: 10.24114/cess.v4i1.11458.
H. A. Prihanditya, “The Implementation of Z-Score Normalization and Boosting Techniques to Increase Accuracy of C4 . 5 Algorithm in Diagnosing Chronic K
M. Using dan D. Bouldin, “Optimalisasi Jumlah Kelompok Pada Metode Single Linkage,” 2016.
G. Haris, P. Wibawa, I. G. Made, A. Sasmita, dan I. M. S. Raharja, “Analisis Data Log Honeypot Menggunakan Metode K- Means Clustering,” J. Ilm. Merpati Univ. Udayana, vol. 8, no. 1, hal. 13–21, 2020.
A. Rohmah, F. Sembiring, dan ..., “Implementasi Algoritma K-Means Clustering Analysis Untuk Menentukan Hambatan Pembelajaran Daring (Studi Kasus: Smk Yaspim …,” … Sist. Inf. dan …, hal. 290–298, 2021, [Daring]. Tersedia pada: https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/32.
N. Lubis, “Penerapan Customer Relationship Management (Crm) Dengan Menggunakan Metode Lrfm Analysis,” J. Din. Manaj. Dan Bisnis, vol. 1, no. 2, hal. 283, 2018, doi: 10.21009/jdmb.01.2.06.
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;