Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM)

Cryptocurrency Price Prediction Using Long Short Term Memory (LSTM) Algorithm

  • Moch Farryz Rizkilloh Universitas Telkom
  • Sri Widiyanesti Universitas Telkom
Keywords: Cryptocurrency, RNN, LSTM, Price Forecasting, BTC

Abstract

Technological developments continue to encourage the creation of various innovations in almost all aspects of human life. One of the innovations that is becoming a worldwide phenomenon today is the presence of cryptocurrency as a digital currency that is able to replace the role of conventional currency as a means of payment. Currently, the number of cryptocurrency investors in Indonesia has reached 4.45 million people as of March 2021, an increase of 78% compared to the end of the previous year. Very volatile price movements make cryptocurrency investments considered speculative so the risks faced are also very high. The purpose of this study is to build a predictive model that is able to forecast prices on the cryptocurrency market. The algorithm used to build the prediction model is Long Short Term Memory (LSTM). LSTM is the development of the Recurrent Neural Network (RNN) algorithm to overcome problems in the RNN in managing data for a long period. LSTM is considered superior to other algorithms in managing time series data. The data in this study were taken from the Yahoo Finance website using the Pandas Datareader library through Google Collaboratory. The entire prediction model development process is carried out through Google Collaboratory tools. To improve the accuracy of the model, the Nadam optimization algorithm was used and three testing sessions were carried out with the number of Epochs of 1, 10, and 20 in each session. The final test results show that the best prediction performance occurs when testing the DOGE coin type with the number of Epoch 20 which gets an RMSE value of 0.0630.

Downloads

Download data is not yet available.

References

N. Huda and R. Hambali, “Risiko dan Tingkat Keuntungan Investasi Cryptocurrency,” J. Manaj. dan Bisnis, vol. 17, no. 1, pp. 72–84, 2020, doi: 10.29313/performa.v17i1.7236.

D. K. C. Lee, L. Guo, and Y. Wang, “Cryptocurrency: A new investment opportunity?,” J. Altern. Investments, vol. 20, no. 3, pp. 16–40, 2018, doi: 10.3905/jai.2018.20.3.016.

H. Dirgandara and W. T. Rahmawati, “Minat terhadap aset kripto makin tinggi, bursa kripto catat kenaikan volume transaksi,” May 17, 2021. https://investasi.kontan.co.id/news/minat-terhadap-aset-kripto-makin-tinggi-bursa-kripto-catat-kenaikan-volume-transaksi (accessed Sep. 01, 2021).

A. Lidwina, “Harga Bitcoin Anjlok ke Level US$ 37 Ribu/Koin | Databoks,” May 20, 2021. https://databoks.katadata.co.id/datapublish/2021/05/20/harga-bitcoin-anjlok-ke-level-us-37-ribukoin (accessed Sep. 01, 2021).

P. Lim, Marcus dan Saujana, “Volatilitas Tinggi Aset Kripto adalah Wajar — Blockchain Media Indonesia,” May 23, 2021. https://blockchainmedia.id/volatilitas-tinggi-aset-kripto-adalah-wajar/ (accessed Sep. 01, 2021).

Yun, “Jangan Marah dan Baper! Ini Bahaya Besar Investasi Crypto,” May 10, 2021. https://www.cnbcindonesia.com/tech/20210510111551-37-244556/jangan-marah-dan-baper-ini-bahaya-besar-investasi-crypto (accessed Sep. 01, 2021).

F. Fadillah, S. A. Wibowo, G. Budiman, F. T. Elektro, and U. Telkom, “Perancangan Dan Implementasi Prediksi Harga Saham Pada Aplikasi Berbasis Android Menggunakan Metode Support Vector Regression,” vol. 7, no. 2, pp. 3869–3876, 2020.

O. Wijaya, Dimaz Ankaa; Darmawan, Blockchain : Dari Bitcoin Untuk Dunia. Jakarta: Jasakom, 2017.

R. A. Wibowo and B. Rikumahu, “Peramalan Dengan Volatilitas Frekuensi Tinggi Untuk Vector Regression Dan Regresi Linier Forecasting High Frequency Volatility for Cryptocurrencies and Conventional Currencies With Support Vector Regression ( a Study on October 2017 – September 2018 Perio,” vol. 6, no. 3, pp. 5647–5652, 2019.

S. Zahara, Sugianto, and M. B. Ilmiddafiq, “Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short Term Memory (LSTM) Berbasis Cloud Computing,” Resti, vol. 1, no. 1, pp. 19–25, 2019, doi: https://doi.org/10.29207/resti.v3i3.1086.

I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017, doi: 10.22146/ijccs.24716.

J.-R. J. N. Che-Sheng Hsu, “Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning Che-Sheng,” IEEE Access, pp. 58–61, 2018, doi: 10.1109/ACCESS.2020.2966827.

T. Gao, Y. Chai, and Y. Liu, “Applying long short term momory neural networks for predicting stock closing price,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2017-Novem, pp. 575–578, 2018, doi: 10.1109/ICSESS.2017.8342981.

P. A. Riyantoko and T. M. Fahruddin, “Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (Lstm),” Semin. Nas. …, vol. 2020, no. Semnasif, pp. 427–435, 2020, [Online]. Available: http://www.jurnal.upnyk.ac.id/index.php/semnasif/article/view/4135.

Ferdiansyah, S. H. Othman, R. Zahilah Raja Md Radzi, D. Stiawan, Y. Sazaki, and U. Ependi, “A LSTM-Method for Bitcoin Price Prediction: A Case Study Yahoo Finance Stock Market,” ICECOS 2019 - 3rd Int. Conf. Electr. Eng. Comput. Sci. Proceeding, no. June, pp. 206–210, 2019, doi: 10.1109/ICECOS47637.2019.8984499.

A. S. B. Karno, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory),” J. Inform. Inf. Secur., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.31599/jiforty.v1i1.133.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019, doi: http://dx.doi.org/10.23887/janapati.v8i3.19139.

F. Faturohman, B. Irawan, and C. Setianingsih, “Analisis Sentimen Pada Bpjs Kesehatan Menggunakan Recurrent Neural Network,” e-Proceeding Eng., vol. 7, no. 2, pp. 4545–4552, 2020.

T. T. H. Le, J. Kim, and H. Kim, “An Effective Intrusion Detection Classifier Using Long Short-Term Memory with Gradient Descent Optimization,” 2017 Int. Conf. Platf. Technol. Serv. PlatCon 2017 - Proc., pp. 0–5, 2017, doi: 10.1109/PlatCon.2017.7883684.

A. H. A. Fitria Febrianti, Moh. Hafiyusholeh, “Perbandingan Pengklusteran Data Iris Menggunakan Metode K-Means Dan Fuzzy C- MeanS,” J. Mat. “MANTIK,” vol. 02 No. 01, pp. 7–13, 2016.

Published
2022-02-01
How to Cite
Moch Farryz Rizkilloh, & Sri Widiyanesti. (2022). Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 25 - 31. https://doi.org/10.29207/resti.v6i1.3630
Section
Artikel Rekayasa Sistem Informasi