Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis

  • Linda Perdana Wanti Politeknik Negeri Cilacap
  • Lina Puspitasari Akbid Graha Mandiri
Keywords: Autism Spectrum Disorder; Expert System; Optimization; Fuzzy Logic Method

Abstract

Diagnosis of autism spectrum disorder (ASD) can use a fuzzy inference system. The use of fuzzy logic method to obtain ASD diagnosis results according to experts based on the limits of factors/symptoms of the disease and all the rules obtained from experts. Recommendations for therapy and preventive actions can be given by experts after knowing the results of the diagnosis of ASD using the fuzzy logic method. This study serves to diagnose ASD by optimizing each degree of membership in the fuzzy logic method with the Mamdani method approach which is involved in the autism detection process involving 96 patient data. The Mamdani method itself can process an uncertain value from the user/patient into a definite value whose membership degree can be determined and adjusted to the conditions of the problem. Optimization was carried out on the degree of membership for all variables involved in the process of diagnosing ASD, namely social interaction, social communication and imagination and behavior patterns. The results of this study indicate a relatively small level of fuzzy calculation error with a precision value of 94.4%, a recall precision value of 65.4% and an error rate value of 3.05%. Calculation of accuracy shows a result of 90.59%.

Downloads

Download data is not yet available.

References

B. Razi, D. Imani, M. Hassanzadeh Makoui, R. Rezaei, and S. Aslani, “Association between MTHFR gene polymorphism and susceptibility to autism spectrum disorders: Systematic review and meta-analysis,” Res. Autism Spectr. Disord., vol. 70, no. October 2019, p. 101473, 2020, doi: 10.1016/j.rasd.2019.101473.

B. M. DeJesus, R. C. Oliveira, F. O. de Carvalho, J. de Jesus Mari, R. M. Arida, and L. Teixeira-Machado, “Dance promotes positive benefits for negative symptoms in autism spectrum disorder (ASD): A systematic review,” Complement. Ther. Med., vol. 49, no. September 2019, 2020, doi: 10.1016/j.ctim.2020.102299.

E. A. Wise, “Aging in Autism Spectrum Disorder,” Am. J. Geriatr. Psychiatry, 2019, doi: 10.1016/j.jagp.2019.12.001.

L. Xu, Q. Hua, J. Yu, and J. Li, “Classification of autism spectrum disorder based on sample entropy of spontaneous functional near infra-red spectroscopy signal,” Clin. Neurophysiol., 2020, doi: 10.1016/j.clinph.2019.12.400.

D. Aprilia, A. Johar, and Pudji Hartuti, “Sitem Pakar Diagnosa Autisme pada Anak,” Rekursif, vol. 2, no. Sistem Pakar, pp. 92–98, 2014.

B. F. Yanto, I. Werdiningsih, and E. Purwanti, “Aplikasi Sistem Pakar Diagnosa Penyakit Pada Anak Bawah Lima Tahun Menggunakan Metode Forward Chaining,” J. Inf. Syst. Eng. Bus. Intell., vol. 3, no. 1, p. 61, 2017, doi: 10.20473/jisebi.3.1.61-67.

R. Rusdiansyah, S. Setiawan, and M. Badrul, “Diabetes Mellitus Diagnosis Expert System With Web-Based Forward Chaining,” SinkrOn, vol. 3, no. 2, p. 61, Mar. 2019, doi: 10.33395/sinkron.v3i2.10055.

S. Dai et al., “SeDeM expert system for directly compressed tablet formulation: A review and new perspectives,” Powder Technol., vol. 342, pp. 517–527, 2019, doi: 10.1016/j.powtec.2018.10.027.

M. Castelli, L. Manzoni, L. Vanneschi, and A. Popovič, “An expert system for extracting knowledge from customers’ reviews: The case of Amazon.com, Inc.,” Expert Syst. Appl., vol. 84, pp. 117–126, 2017, doi: 10.1016/j.eswa.2017.05.008.

Y. Liu, C. M. Eckert, and C. Earl, A review of fuzzy AHP methods for decision-making with subjective judgements, vol. 161. Elsevier Ltd, 2020.

F. Dweiri, S. Kumar, S. Ahmed, and V. Jain, “Corrigendum to ‘ Designing an integrate d AHP base d decision support system for supplier selection in automotive industry ’ Expert Systems,” Expert Syst. Appl., vol. 72, pp. 467–468, 2017, doi: 10.1016/j.eswa.2016.12.025.

L. P. Wanti, I. N. Azroha, and M. N. Faiz, “Implementasi User Centered Design Pada Sistem Pakar Diagnosis Gangguan Perkembangan Motorik Kasar Pada Anak Usia Dini,” Media Apl., vol. 11, no. 1, pp. 1–10, 2019.

A. H. Oluwole, A. A. Adekunle, A. O. Olasunkanmi, and A. O. Adeodu, “A shoveling-related pain intensity prediction expert system for workers’ manual movement of material,” Int. J. Technol., vol. 7, no. 4, pp. 603–615, 2016, doi: 10.14716/ijtech.v7i4.2208.

P. Ananta Dama Putra, I. K. Adi Purnawan, and D. Purnami Singgih Putri, “Sistem Pakar Diagnosa Penyakit Mata dengan Fuzzy Logic dan Naïve Bayes,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 6, no. 1, p. 35, 2018, doi: 10.24843/jim.2018.v06.i01.p04.

S. Isna Fitria Ali, R. Rizal Isnanto, and A. Budi Prasetijo, “Sistem Pakar Diagnosis Penyakit Difteri Menggunakan Logika Fuzzy,” pp. 89–104, 2020, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/28778.

E. Suanto, M. Sidqon, and F. Astuti Hermawati, “Sistem Diagnosa Berbasis Fuzzy Pada Penyakit Polineoropati Akibat Diabetes Melitus,” vol. 13, 2017.

F. Ekajaya, N. Hidayat, and M. Tri Ananta, “Diagnosis Penyakit THT Menggunakan Metode Fuzzy Tsukamoto Berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 10, pp. 2361–2365, 2018.

A. Makarios and M. I. Prasetiyowati, “Rancang Bangun Sistem Pakar untuk Diagnosis Penyakit Mulut dan Gigi dengan Metode Fuzzy Logic,” J. Ultim., vol. 4, no. 2, pp. 1–6, 2012, doi: 10.31937/ti.v4i2.313.

A. Setyono and S. N. Aeni, “Development of decision support system for ordering goods using fuzzy Tsukamoto,” Int. J. Electr. Comput. Eng., vol. 8, no. 2, pp. 1182–1193, 2018, doi: 10.11591/ijece.v8i2.pp1182-1193.

D. Kurnianingtyas, W. F. Mahmudy, A. W. Widodo, F. Ilmu, K. Universitas, and A. Genetika, “Optimasi Derajat Keanggotaan Fuzzy Tsukamoto Menggunakan,” vol. 4, no. 1, pp. 8–18, 2017.

S. Ghozy et al., “Association of breastfeeding status with risk of autism spectrum disorder: A systematic review, dose-response analysis and meta-analysis,” Asian J. Psychiatr., vol. 48, p. 101916, 2020, doi: 10.1016/j.ajp.2019.101916.

E. Puerto, J. Aguilar, C. López, and D. Chávez, “Using Multilayer Fuzzy Cognitive Maps to diagnose Autism Spectrum Disorder,” Appl. Soft Comput. J., vol. 75, pp. 58–71, 2019, doi: 10.1016/j.asoc.2018.10.034.

B. Eskandari, H. Pouretemad, M. Mousavi, and H. Farahani, “Common elements of parent management training programs for preschool children with autism spectrum disorder,” Asian J. Psychiatr., vol. 52, no. November 2019, p. 102149, 2020, doi: 10.1016/j.ajp.2020.102149.

A. Alivar et al., “Smart bed based daytime behavior prediction in Children with autism spectrum disorder - A Pilot Study,” Med. Eng. Phys., vol. 83, pp. 15–25, 2020, doi: 10.1016/j.medengphy.2020.07.004.

L. de Vries, I. Fouquaet, B. Boets, G. Naulaers, and J. Steyaert, “Autism spectrum disorder and pupillometry: A systematic review and meta-analysis,” Neurosci. Biobehav. Rev., vol. 120, pp. 479–508, 2021, doi: 10.1016/j.neubiorev.2020.09.032.

J. A. Cascia and J. J. Barr, “Associations among parent and teacher ratings of systemizing, vocabulary and executive function in children with autism spectrum disorder,” Res. Dev. Disabil., vol. 106, no. July, p. 103779, 2020, doi: 10.1016/j.ridd.2020.103779.

A. Gandotra, E. Kotyuk, A. Szekely, K. Kasos, L. Csirmaz, and R. Cserjesi, “Fundamental movement skills in children with autism spectrum disorder: A systematic review,” Res. Autism Spectr. Disord., vol. 78, no. July, p. 101632, 2020, doi: 10.1016/j.rasd.2020.101632.

D. Samanta, “An Updated Review of Tuberous Sclerosis Complex-Associated Autism Spectrum Disorder,” Pediatr. Neurol., vol. 109, no. xxxx, pp. 4–11, 2020, doi: 10.1016/j.pediatrneurol.2020.03.008.

M. M. Vandewouw, E. J. Choi, C. Hammill, J. P. Lerch, E. Anagnostou, and M. J. Taylor, “Changing Faces: Dynamic Emotional Face Processing in Autism Spectrum Disorder Across Childhood and Adulthood,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2020, doi: 10.1016/j.bpsc.2020.09.006.

J. A. Andoy Galvan et al., “Mode of delivery, order of birth, parental age gap and autism spectrum disorder among Malaysian children: A case-control study,” Heliyon, vol. 6, no. 10, p. e05068, 2020, doi: 10.1016/j.heliyon.2020.e05068.

S. H. Liao, “Expert system methodologies and applications-a decade review from 1995 to 2004,” Expert Syst. Appl., vol. 28, no. 1, pp. 93–103, 2005, doi: 10.1016/j.eswa.2004.08.003.

K. B. Ooi and G. W. H. Tan, “Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card,” Expert Syst. Appl., vol. 59, pp. 33–46, 2016, doi: 10.1016/j.eswa.2016.04.015.

D. Santra, S. K. Basu, J. K. Mandal, and S. Goswami, “Rough set based lattice structure for knowledge representation in medical expert systems: Low back pain management case study,” Expert Syst. Appl., vol. 145, p. 113084, 2020, doi: 10.1016/j.eswa.2019.113084.

L. P. Wanti and S. Romadlon, “Implementasi Forward Chaining Method Pada Sistem Pakar Untuk Deteksi Dini Penyakit Ikan,” Infotekmesin, vol. 11, no. 02, pp. 74–79, 2020, doi: 10.35970/infotekmesin.v11i2.248.

H. M. Lyu, W. H. Zhou, S. L. Shen, and A. N. Zhou, “Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen,” Sustain. Cities Soc., vol. 56, p. 102103, 2020, doi: 10.1016/j.scs.2020.102103.

H. T. Phan, N. T. Nguyen, V. C. Tran, and D. Hwang, “An approach for a decision-making support system based on measuring the user satisfaction level on Twitter,” Inf. Sci. (Ny)., vol. 561, pp. 243–273, 2021, doi: 10.1016/j.ins.2021.01.008.

C. Chiang and Y. Chen, “Neural network fuzzy sliding mode control of pneumatic muscle actuators,” Eng. Appl. Artif. Intell., vol. 65, no. June 2017, pp. 68–86, 2017, doi: 10.1016/j.engappai.2017.06.021.

M. T. Al Nahyan, Y. E. Hawas, M. S. Mohammad, and B. Basheerudeen, “A decision-support system for identifying the best contractual delivery methods of mega infrastructure developments,” ICEIS 2018 - Proc. 20th Int. Conf. Enterp. Inf. Syst., vol. 1, no. Iceis 2018, pp. 407–414, 2018, doi: 10.5220/0006694704070414.

E. Danish and M. Onder, “Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine,” Saf. Health Work, vol. 11, no. 3, pp. 322–334, 2020, doi: 10.1016/j.shaw.2020.06.005.

Published
2022-02-01
How to Cite
Wanti, L. P., & Lina Puspitasari. (2022). Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 16 - 24. https://doi.org/10.29207/resti.v6i1.3599
Section
Artikel Rekayasa Sistem Informasi