Deteksi Kesamaan Teks Jawaban pada Sistem Test Essay Online dengan Pendekatan Neural Network

Detecting the Similarity of Answer Text in an Online Essay Test System with a Neural Network Approach

  • I Made Suwija Putra Universitas Udayana https://orcid.org/0000-0002-9136-6379
  • Putu Jhonarendra Department of Information Technology, Faculty of Engineering, Udayana University
  • Ni Kadek Dwi Rusjayanthi Department of Information Technology, Faculty of Engineering, Udayana University
Keywords: Deteksi Similarity, Neural Network, LSI, Jaccard

Abstract

E-learning is an online learning system that applies information technology in the teaching process. E-learning used to facilitate information delivery, learning materials and online test or assignments. The online test in evaluating students’ abilities can be multiple choice or essay. Online test with essay answers is considered the most appropriate method for assessing the results of complex learning activities. However, there are some challenges in evaluating students essay answers. One of the challenges is how to make sure the answers given by students are not the same as other students answers or 'copy-paste'. This study makes a similarity detection system (Similarity Checking) for students' essay answers that are automatically embedded in the e-learning system to prevent plagiarism between students. In this paper, we use Artificial Neural Network (ANN), Latent Semantic Index (LSI), and Jaccard methods to calculate the percentage of similarity between students’ essays. The essay text is converted into array that represents the frequency of words that have been preprocessed data. In this study, we evaluate the result with mean absolute percentage error (MAPE) approach, where the Jaccard method is the actual value. The experimental results show that the ANN method in detecting text similarity has closer performance to the Jaccard method than the LSI method and this shows that the ANN method has the potential to be developed in further research.

Downloads

Download data is not yet available.

References

G. Strimel and M. E. Grubbs, “Positioning technology and engineering education as a key force in STEM education,” J. Technol. Educ., 2016, doi: 10.21061/jte.v27i2.a.2.

W. He, Z. (Justin) Zhang, and W. Li, “Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic,” Int. J. Inf. Manage., vol. 57, 2021, doi: 10.1016/j.ijinfomgt.2020.102287.

G. Sakarkar, “Intelligent Online e-Learning Systems : A Comparative Study,” vol. 56, no. 4, pp. 21–25, 2012.

A. Shah and S. Jain, “An Agent based Personalized Intelligent elearning,” Int. J. Comput. Appl., 2011, doi: 10.5120/2411-3215.

E. L. Amalia, A. J. Jumadi, I. A. Mashudi, and D. W. Wibowo, “Analisis Metode Cosine Similarity Pada Aplikasi Ujian Online Otomatis (Studi Kasus JTI POLINEMA),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, p. 343, 2021, doi: 10.25126/jtiik.2021824356.

N. M. A. Lestari and M. Sudarma, “Perencanaan Search Engine E-commerce dengan Metode Latent Semantic Indexing Berbasis Multiplatform,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 8, no. 1, p. 31, 2017, doi: 10.24843/lkjiti.2017.v08.i01.p04.

K. Selvi and R. M. Suresh, “Context similarity measure using fuzzy formal concept analysis,” in ACM International Conference Proceeding Series, 2012, pp. 420–426, doi: 10.1145/2393216.2393287.

P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning Text Similarity with Siamese Recurrent Networks,” Aug. 2016, pp. 148–157, doi: 10.18653/v1/w16-1617.

Y. L. Joane, A. Sinsuw, and A. Jacobus, “Rancang Bangun Aplikasi Deteksi Kemiripan Dokumen Teks Menggunakan Algoritma Ratcliff/Obershelp,” J. Tek. Inform., vol. 11, no. 1, 2017, doi: 10.35793/jti.11.1.2017.17654.

N. Alamsyah, “Deteksi Plagiarisme Tingkat Kemiripan Judul Skripsi Dengan Algoritma Winnowing,” Technol. J. Ilm., vol. 8, no. 4, p. 205, 2017, doi: 10.31602/tji.v8i4.1119.

N. E. Diana and I. Hanana Ulfa, “Measuring performance of n-gram and jaccard-similarity metrics in document plagiarism application,” in Journal of Physics: Conference Series, 2019, vol. 1196, no. 1, doi: 10.1088/1742-6596/1196/1/012069.

D. Thorleuchter, D. Van Den Poel, and A. Prinzie, “Mining ideas from textual information,” Expert Syst. Appl., vol. 37, no. 10, 2010, doi: 10.1016/j.eswa.2010.04.013.

E. Iftikhar, A. Iftikhar, and M. K. Mehmood, “Identification of textual entailments in business rules,” 2016 6th Int. Conf. Innov. Comput. Technol. INTECH 2016, pp. 706–711, 2017, doi: 10.1109/INTECH.2016.7845104.

A. W. Pradana and M. Hayaty, “The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, 2019, doi: 10.22219/kinetik.v4i4.912.

J. Wibowo, “Aplikasi Penentuan Kata Dasar Dari Kata Berimbuhan Pada Kalimat Bahasa Indonesia Dengan Algoritma Stemming,” J. Ris. Komput., vol. 3, no. 5, 2016.

M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 874, no. 1, doi: 10.1088/1757-899X/874/1/012017.

S. Fahmi, L. Purnamawati, G. F. Shidik, M. Muljono, and A. Z. Fanani, “Sentiment analysis of student review in learning management system based on sastrawi stemmer and SVM-PSO,” 2020, doi: 10.1109/iSemantic50169.2020.9234291.

I. M. Suwija Putra, Y. Adiwinata, D. P. Singgih Putri, and N. P. Sutramiani, “Extractive Text Summarization of Student Essay Assignment Using Sentence Weight Features and Fuzzy C-Means,” Int. J. Artif. Intell. Res., vol. 5, no. 1, pp. 13–24, 2021, doi: 10.29099/ijair.v5i1.187.

S. Harvey and R. Harvey, “An introduction to artificial intelligence,” Appita J., vol. 51, no. 1, 1998, doi: 10.2514/6.1994-294.

M. A. Hanafiah, N. L. W. S. R. Ginantra, and A. D. GS, “Analysis of ANN Backpropagation Ability to Predict Expenditure Group Inflation,” IJISTECH (International J. Inf. Syst. Technol., vol. 4, no. 2, 2020, doi: 10.30645/ijistech.v4i2.103.

D. Marlina and F. Arifin, “Predicting The Number of Tourists Based on Backpropagation Algorithm,” RESTI J. (System Eng. Inf. Technol., vol. 5, no. 3, pp. 439 – 445, 2021, doi: https://doi.org/10.29207/resti.v5i3.3061.

T. Hofmann, “Probabilistic Latent Semantic Indexing,” ACM SIGIR Forum, vol. 51, no. 2, 2017, doi: 10.1145/3130348.3130370.

R. Anita, C. N. Subalalitha, A. Dorle, and K. Venkatesh, “Semantic search using Latent Semantic Indexing and Word Net,” ARPN J. Eng. Appl. Sci., vol. 12, no. 2, 2017.

M. S. Hasibuan, L. E. Nugroho, and P. I. Santosa, “Model detecting learning styles with artificial neural network,” J. Technol. Sci. Educ., vol. 9, no. 1, 2019, doi: 10.3926/jotse.540.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Cluster validity methods: Part I,” SIGMOD Record, vol. 31, no. 2. 2002, doi: 10.1145/565117.565124.

S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using of jaccard coefficient for keywords similarity,” in Lecture Notes in Engineering and Computer Science, 2013, vol. 2202.

H. T. Huynh, N. Duong-Trung, D. Q. Truong, and H. X. Huynh, “Vietnamese text classification with textrank and jaccard similarity coefficient,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 6, 2020, doi: 10.25046/aj050644.

A. Giełczyk, M. Choras, and R. Kozik, “Lightweight verification schema for image-based palmprint biometric systems,” Mob. Inf. Syst., vol. 2019, 2019, doi: 10.1155/2019/2325891.

S. Bag, S. K. Kumar, and M. K. Tiwari, “An efficient recommendation generation using relevant Jaccard similarity,” Inf. Sci. (Ny)., vol. 483, 2019, doi: 10.1016/j.ins.2019.01.023.

T. T. N. Le and T. V. X. Phuong, “Privacy Preserving Jaccard Similarity by Cloud-Assisted for Classification,” Wirel. Pers. Commun., vol. 112, no. 3, 2020, doi: 10.1007/s11277-020-07131-6.

A. Hashemi Fath, F. Madanifar, and M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems,” Petroleum, vol. 6, no. 1, 2020, doi: 10.1016/j.petlm.2018.12.002.

C. K. Dewa, A. L. Fadhilah, and A. Afiahayati, “Convolutional Neural Networks for Handwritten Javanese Character Recognition,” IJCCS (Indonesian J. Comput. Cybern. Syst., 2018, doi: 10.22146/ijccs.31144.

Published
2021-12-30
How to Cite
Putra, I. M. S., Putu Jhonarendra, & Ni Kadek Dwi Rusjayanthi. (2021). Deteksi Kesamaan Teks Jawaban pada Sistem Test Essay Online dengan Pendekatan Neural Network . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1070 - 1082. https://doi.org/10.29207/resti.v5i6.3544
Section
Artikel Teknologi Informasi