Analisis Algoritma Shi-Tomasi Dalam Pengujian Citra Senyum Pada Wajah Manusia

Shi-Tomasi Algorithm Analysis in Testing Smile Image on Human Face

  • Ardi wijaya Universitas Muhammadiyah Bengkulu
  • Puji Rahayu Universitas Muhammadiyah Bengkulu
  • Rozali Toyib Universitas Muhammadiyah Bengkulu
Keywords: Image Processing, Shi-Tomasi Algorithm, Smile Detection

Abstract

Problems in image processing to obtain the best smile are strongly influenced by the quality, background, position, and lighting, so it is very necessary to have an analysis by utilizing existing image processing algorithms to get a system that can make the best smile selection, then the Shi-Tomasi Algorithm is used. the algorithm that is commonly used to detect the corners of the smile region in facial images. The Shi-Tomasi angle calculation processes the image effectively from a target image in the edge detection ballistic test, then a corner point check is carried out on the estimation of translational parameters with a recreation test on the translational component to identify the cause of damage to the image, it is necessary to find the edge points to identify objects with remove noise in the image. The results of the test with the shi-Tomasi algorithm were used to detect a good smile from 20 samples of human facial images with each sample having 5 different smile images, with test data totaling 100 smile images, the success of the Shi-Tomasi Algorithm in detecting a good smile reached an accuracy value of 95% using the Confusion Matrix, Precision, Recall and Accuracy Methods.

Downloads

Download data is not yet available.

References

F. Khan, “Facial Expression Recognition using Facial Landmark Detection and Feature Extraction via Neural Networks,” 2018.

H. A. Kadhim and W. A. Araheemah, “A Comparative Between Corner-Detectors ( Harris, Shi-Tomasi & FAST ) in Images Noisy Using Non-Local Means Filter,” J. Al-Qadisiyah Comput. Sci. Math., vol. 11, no. 3, p. Page 86-93, 2019.

Y. Li, J. Li, and F. Liu, “Ballistic target translation compensation based on corner detection algorithm,” IOP Conf. Ser. Earth Environ. Sci., vol. 693, no. 1, 2021, doi: 10.1088/1755-1315/693/1/012099.

Naser Jawas, “Nas er , Pelacakan Gerakan Tangan Untuk … 13,” IT J., vol. 5, no. 86, pp. 13–23, 2017.

S. Hanik Mujiati, “Analisis Dan Perancangan Sistem Informasi Stok Obat Pada Apotek Arjowinangun,” Indones. J. Comput. Sci. - Speed FTI UNSA, vol. 9330, no. 2, pp. 1–6, 2013.

R. V. Imbar and W. Chandra, “Aplikasi Enkripsi Tanda Tangan di PT.BPR Daya Lumbung Asia,” J. Inform., vol. 5, no. 1, pp. 47–58, 2009.

G. G. Maulana, “Pembelajaran Dasar Algoritma Dan Pemrograman Menggunakan El-Goritma Berbasis Web,” J. Tek. Mesin, vol. 6, no. 2, p. 8, 2017, doi: 10.22441/jtm.v6i2.1183.

M. R. D. Jodi, “Algoritma dan Struktur Data,” 2020, doi: 10.31219/osf.io/xmbhc.

K. Khairul, S. Haryati, and Y. Yusman, “Aplikasi Kamus Bahasa Jawa Indonesia Dengan Algoritma Raita Berbasis Android,” J. Teknol. Inf. dan Pendidik., vol. 11, no. 1, pp. 1–6, 2018, doi: 10.24036/tip.v11i1.102.

A. R. Putri, “Pengolahan Citra Dengan Menggunakan Web Cam Pada Kendaraan Bergerak Di Jalan Raya,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 1, no. 01, pp. 1–6, 2016, doi: 10.29100/jipi.v1i01.18.

I. A. Sulistyo, “Sistem Deteksi Panen Padi Berdasarkan Warna Daun Menggunakan Fuzzy C-Means,” Tugas Akhir Univ. Muhamadiyah Surakarta, 2017.

M. R. Kumaseh, L. Latumakulita, and N. Nainggolan, “Segmentasi Citra Digital Ikan Menggunakan Metode Thresholding,” J. Ilm. Sains, vol. 13, no. 1, p. 74, 2013, doi: 10.35799/jis.13.1.2013.2057.

O. S. Siti Bahirrah, “Gambaran Tipe Senyum Berdasarkan Fotometri Pada Mahasiswa India Tamil Malaysia Fkg Usu (Smile Analysis With Photometric Methods Of Malaysian Indian Tamil Dentistry Students At University Of Sumatera Utara),” vol. 18, no. 3, pp. 268–273, 2015.

A. Budiman, Ya. Sami, S.Sn, M.Sn, D. A. Hafiz, and M.Pd, “Senyum Dalam Ungkap Karya Seni Lukis,” Serupa J. Art Educ., vol. 6, no. 2, 2018.

R. Firliana, R. Wulanningrum, and W. Sasongko, “Implementasi Principal Component Analysis (PCA) Untuk Pengenalan Wajah Manusia,” Nusant. Eng. ISSN 2355-6684, vol. 2, no. 1, pp. 65–69, 2005.

M. Burhanudin, “Rancang Bangun Prototype Kepala Robot Pengenalan Citra Wajah Manusia Menggunakan Webcam Dengan Mikrokontroler Atmega 8,” no. Lcm, pp. 1–11, 2016.

S. Sinurat, “Analisa Sistem Pengenalan Wajah Berbentuk Citra Digital Dengan Algoritma Principal Components Analysis,” J. Inf. dan Teknol. Ilm., vol. 3, pp. 112–122, 2014.

R. R. Akbar, “Implementasi Teknologi Augmented Reality pada Majalah Interaktif Berbasis Android Menggunakan Metode Algoritma FAST Corner Detection,” 2016.

E. Rosten and T. Drummond, “Erickson - 2008 - Methods of treatment using anti-erbb antibody-maytansinoid conjugates.pdf,” pp. 430–443, 2006.

G. Sun, G. Li, L. Xu, and J. Wang, “The location and recognition of Chinese vehicle license plates under complex backgrounds,” J. Multimed., vol. 4, no. 6, pp. 442–449, 2009, doi: 10.4304/jmm.4.6.442-449

Published
2021-12-30
How to Cite
Ardi wijaya, Puji Rahayu, & Rozali Toyib. (2021). Analisis Algoritma Shi-Tomasi Dalam Pengujian Citra Senyum Pada Wajah Manusia. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1036 - 1043. https://doi.org/10.29207/resti.v5i6.3496
Section
Artikel Teknologi Informasi