Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra
Deteksi Sarung Samarinda Berbasis Pengolahan Citra
Abstract
Samarinda sarong is one of the cultural treasures in the form of cloth from Samarinda, East Kalimantan. It has a characteristic in the form of a square motif with a unique color combination. However, several people do not know the difference between a Samarinda sarong and a non-Samarinda sarong because the Samarinda sarongs may have a similar motif or color to a non-Samarinda sarong. This study aims to develop a Samarinda sarong detection method to distinguish between the sarong of Samarinda and non-Samarinda. The detection of the Samarinda sarong was carried out based on two features: color and texture. The feature extraction of color was applied using color moments and Gray Level Co-Occurrence Matrix (GLCM) for texture. The classification was implemented using the Naive Bayes method. The dataset used consists of 250 sarong images (150 Samarinda sarong images and 100 Non-Samarinda sarong images) divided into training and test data. It was divided using percentage split and cross-validation. The test results show the implementation of the color moments, GLCM, and Naive Bayes methods using a percentage split (70%) produce the best accuracy of 0.987 compared to using cross-validation (K=10) with an accuracy of 0.984. The difference may occur because the number of training and testing data used on percentage split and cross-validation is different. Moreover, the sarong images used on training and test data were chosen randomly.
Downloads
References
R. Rifayanti, G. Kristina, S. R. Doni, R. Setiani, and T. P. Welha, “Filosofi Sarung Tenun Samarinda Sebagai Simbol dan Identitas Ibu Kota Kalimantan Timur,” Psikostudia J. Psikol., vol. 6, no. 2, p. 21, 2017, doi: 10.30872/psikostudia.v6i2.2373.
Purwadi, “Kajian Sarung Samarinda dari Prespektif Pemangku Kepentingan,” Kinerja, vol. 12, no. 2, pp. 89–101, 2015.
A. Syarif, A. R. Tanjung, R. Andrian, and F. R. Lumbanraja, “Implementasi Metode Ekstraksi Fitur Gabor Filter dan Probablity Neural Network (PNN) untuk Identifikasi Kain Tapis Lampung,” J. Komputasi, vol. 8, pp. 1–9, 2020.
M. N. Fauzy, B. Soedijono, and Sudarmawan, “Ekstraksi citra fitur pada pengenalan pola motif batik sleman menggunakan metode gray level co-occurrence matrix,” J. Inf. Politek. Indonusa Surakarta, vol. 5, pp. 3–6, 2019.
R. A. Putri and N. Rochmawati, “Penerapan Algoritma Support Vector Machine untuk Klasifikasi Motif Citra Batik Solo Berdasarkan Fitur Multi- Autoencoders,” J. Informatics Comput. Sci., vol. 01, no. 01, pp. 56–63, 2019.
M. D. Rosyadi, “Pengenalan Motif Dasar Pada Kain Sasirangan,” Technologia, vol. 8, no. 2, pp. 53–61, 2017.
Z. MUSIAFA, “Perancangan Ekstraksi Fitur Motif Sasirangan Menggunakan Algoritma Naïve Bayes Berbasis Color Histogram Dan Gray Level Co-Occurrence Matrices (Glcm),” Technol. J. Ilm., vol. 8, no. 2, p. 108, 2017, doi: 10.31602/tji.v8i2.1114.
M. A. Hasan and D. Y. Liliana, “Pengenalan Motif Songket Palembang Menggunakan Deteksi Tepi Canny, PCA dan KNN,” Multinetics, vol. 6, no. 1, pp. 1–7, 2020, doi: 10.32722/multinetics.v6i1.2700.
Kevin, J. Hendryli, and D. E. Herwindiati, “Klasifikasi Kain Tenun Berdasarkan Tekstur & Warna dengan metode K-NN,” J. Comput. Sci. Inf. Syst., vol. 3, no. 2, pp. 85–95, 2019.
Nurhalimah, I. G. P. Wijaya, and B. Fitri, “Klasifikasi Kain Songket Lombok Berdasarkan Fitur Glcm Dan Moment Invariant Dengan Teknik Pengklasifikasian Linear Discriminant Analysis (Lda),” JTIKA, vol. 2, no. 1, pp. 173–183, 2020.
I. P. G. S. Andisana, M. Sudarma, and I. M. O. Widyantara, “Pengenalan Dan Klasifikasi Citra Tekstil Tradisional Berbasis Web Menggunakan Deteksi Tepi Canny, Local Color Histogram Dan Co-Occurrence Matrix,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 3, p. 401, 2018, doi: 10.24843/mite.2018.v17i03.p15.
R. W. Anggi Wahyu Triprasetyo, Danar Putra Pamungkas, “Aplikasi Pengenalan Pola Batik Trenggalek Menggunakan Deteksi Tepi Sobel Dan Algoritma K-,” Apl. Pengenalan Pola Batik Trenggalek Menggunakan Deteksi Tepi Sobel Dan Algoritm. K- MeanS, vol. 2, no. 2, pp. 25–32, 2018.
M. A. Masril, Yuhandri, and Jufriadif Na’am, “Analisis Perbandingan Perbaikan Kualitas Citra Pada Motif Batik Dengan Konsep Deteksi Tepi Robert, Sobel, Canny Menggunakan Metode Morfologi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 1, pp. 36–41, 2019.
M. A. Masril and R. Noviardi, “Analisa Morfologi Dilasi untuk Perbaikan Kualitas Citra Deteksi Tepi Pada Pola Batik Menggunakan Operator Prewitt dan Laplacian of Gaussian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1052–1057, 2020.
R. K. Tjondrowiguno et al., “Aplikasi Pengenalan Pola Batik Dengan Menggunakan Metode Gray-Level Cooccurrence Matrix,” J. Infra, vol. 5, pp. 0–6, 2018.
A. A. Kasim and A. Harjoko, “Klasifikasi Citra Batik Menggunakan Jaringan Syaraf Tiruan Berdasarkan Gray Level Co- Occurrence Matrices (GLCM),” Semin. Nas. Apl. Teknol. Inf. Yogyakarta, 21 Juni 2014, pp. 7–13, 2014.
R. A. Surya, A. Fadlil, and A. Yudhana, “Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor untuk Klasifikasi Citra Batik Pekalongan,” J. Inform. Pengemb. IT (JPIT , Vol. 02, No. 02, Juli 2017, vol. 02, no. 02, pp. 23–26, 2017.
Johan Wahyudi and Ihdahubbi Maulida, “Pengenalan Pola Citra Kain Tradisional Menggunakan Glcm Dan Knn,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 4, no. 2, pp. 43–48, 2019, doi: 10.20527/jtiulm.v4i2.37.
I. Amalia, Indrawati, and Y. M. Amin, “Ekstraksi Fitur Citra Songket Berdasarkan Tekstur Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM),” J. Infomedia, vol. 3, no. 2, pp. 64–68, 2018, doi: 10.30811/jim.v3i2.715.
F. Maharani, B. Hidayat, and H. Fauzi, “Perancangan Sistem Pola Kain Sarung Khas Makassar Dengan Metode Glcm Berbasis Android,” e-Proceeding Eng., vol. 2, no. 2, pp. 2638–2645, 2015.
P. N. Andono and E. H. Rachmawanto, “Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 1–9, 2021.
Murinto and E. Aribowo, “Pengenalan Pola Citra Batik Berdasarkan Tekstur Menggunakan Metode Hidden Markov Tree Segmentation (HMTSeg),” pp. 1–8, 2014.
A. Padmo A.M and M. Murinto, “Segmentasi Citra Batik Berdasarkan Fitur Tekstur Menggunakan Metode Filter Gabor Dan K-Means Clustering,” J. Inform., vol. 10, no. 1, pp. 1173–1179, 2016, doi: 10.26555/jifo.v10i1.a3349.
M. A. Naufal, “Implementasi Metode Klasifikasi K-Nearest Neighbor (K-NN) untuk Pengenalan Pola Batik Motif Lampung,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2017.
J. W. Yodha and A. W. Kurniawan, “Pengenalan Motif Batik Menggunakan Deteksi Tepi Canny Dan K-Nearest Neighbor,” Techno.COM, vol. 13, no. 4, November, pp. 251–262, 2015.
A. Kasim, M. Bakri, and A. Septiarini, “The Artificial Neural Networks (ANN) for Batik Detection Based on Textural Features,” 2020, doi: 10.4108/eai.12-10-2019.2296538.
B. Robi’in, “Analisis Dekomposisi Wavelet Pada Pengenalan Pola Lurik Dengan Metode Learning Vector Quantization,” Ilk. J. Ilm., vol. 9, no. 2, pp. 153–160, 2017, doi: 10.33096/ilkom.v9i2.133.153-160.
N. M. Setiohardjo and A. Harjoko, “Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, pp. 177–188, 2014, doi: https://doi.org/10.22146/ijccs.6545.
E. Purnamasari, D. P. Rini, and Sukemi, “Seleksi Fitur menggunakan Algoritma Particle Swarm Optimization pada Klasifikasi Kelulusan Mahasiswa dengan Metode Naive Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, pp. 469–475, 2020.
P. A. Wicaksana, I. M. Sudarma, and D. C. Khrisne, “Pengenalan Pola Motif Kain Tenun Gringsing Menggunakan Metode Convolutional Neural Network Dengan Model Arsitektur,” J. SPEKTRUM, vol. 6, no. 3, pp. 159–168, 2019.
A. Nugroho, A. B. Gumelar, A. G. Sooai, D. Sarvasti , and P. L. Tahalele, “Perbandingan Performansi Algoritma Pengklasifikasian Terpandu Untuk Kasus Penyakit Kardiovaskular,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 998–1006, 2020
Copyright (c) 2021 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;