Desain Sistem Akuisisi Kecepatan Angin pada Menara SST Berbasis IoT

  • Rachman Rohendi Universitas Tanjungpura
  • Herry Sujaini Universitas Tanjungpura
  • Redi R. Yacoub Universitas Tanjungpura
  • Bomo W. Sanjaya Universitas Tanjungpura
  • Purwoharjono Universitas Tanjungpura
Keywords: wind speed, SST, IoT, MQTT

Abstract

Wind energy is one of the new renewable energy sources that can be used to generate electricity. The application of microgrids is expected to reduce the use of fossil fuels. PT PLN UP3B West Kalimantan has a greenfield type SST (Self Support Tower) communication tower with a height of 52 meters. This study aims to test the wind speed acquisition system in real-time on the SST tower. This research was conducted because there is no research on the design of the wind speed acquisition system on the SST Tower. Wind speed measurement data is obtained from the anemometer sensor mounted on the top of the SST Tower. The wind speed measurement data is sent to the MQTT broker and database using the MQTT protocol with the help of a microcontroller and communication media so that the measurement data can be monitored in real-time using the Grafana application either through local or public networks. The study was conducted from February 6 to 27, 2021. As a result, the wind speed data acquisition system managed to collect 5,501,689 wind speed measurement data stored in the database with an average wind speed of 3.03 m/s.

 

Downloads

Download data is not yet available.

References

BPPT, Indonesia Energy Outlook 2019: The Impact of Increased Utilization of New and Renewable Energy on the National Economy. 2019.

A. Ihwan and I. Sota, “Kajian Potensi Energi Angin untuk Perencanaan Sistem Konversi Energi Angin (SKEA) di Kota Pontianak,” J. Fis. FLUX, vol. 7, no. 2, pp. 130–140, 2010.

Z. Ulva and A. Ihwan, “Potensi Energi Listrik Tenaga Angin Di Kota Pontianak,” Prism. Fis., vol. VI, no. 01, pp. 22–25, 2018.

I. R. Utami, M. I. Jumarang, and Apriansyah, “Perhitungan potensi energi angin di kalimantan barat,” Prism. Fis., vol. 66, no. 1, pp. 65–69, 2018.

“Data Base Transceiver Station (BTS) Telkomsel di Kota Pontianak Tahun 2017 - Datasets - SATU DATA PROVINSI KALIMANTAN BARAT.” http://data.kalbarprov.go.id/dataset/bts-telkomsel-di-kota-pontianak-tahun-2017 (accessed Jul. 16, 2021).

Y. Efendi, “Internet Of Things (Iot) Sistem Pengendalian Lampu Menggunakan Raspberry Pi Berbasis Mobile,” J. Ilm. Ilmu Komput. Fak. Ilmu Komput. Univ. Al Asyariah Mandar, vol. 4, no. 2, pp. 21–27, Sep. 2018, doi: 10.35329/JIIK.V4I2.41.

K. Chooruang and K. Meekul, “Design of an IoT Energy Monitoring System,” Int. Conf. ICT Knowl. Eng., vol. 2018-Novem, pp. 48–51, 2019, doi: 10.1109/ICTKE.2018.8612412.

F. Faisal, E. Mardianto, and T. Muzakir, “Penerapan Raspberry Pi untuk Pengukuran Jarak Jauh terhadap Potensi Energi Angin,” J. Vokasi, pp. 84–89, 2018, [Online]. Available: http://ejurnal.polnep.ac.id/index.php/vokasi/article/view/137.

V. Siswanto and E. Edidas, “Prototype Station Informasi Cuaca Berbasis IOT Wemos di ESP8266,” Voteteknika (Vocational Tek. Elektron. dan Inform., vol. 9, no. 2, p. 71, 2021, doi: 10.24036/voteteknika.v9i2.111651.

R. K. M. Math and N. V. Dharwadkar, “IoT Based low-cost weather station and monitoring system for precision agriculture in India,” Proc. Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), I-SMAC 2018, pp. 81–86, 2019, doi: 10.1109/I-SMAC.2018.8653749.

C. Rakhmad Handoko, A. Zuhri Arfianto, and M. Khoirul Hasin, “Perangkat Informasi Kecepatan Angin Berbasis Motor DC dan Jaringan Internet of Things.”

R. Prabowo, A. Muid, and R. Adriat, “Rancang Bangun Alat Pengukur Kecepatan Angin,” Prism. Fis., vol. 6, no. 2, pp. 94–100, Apr. 2018, doi: 10.26418/PF.V6I2.25260.

R. Simanullang, S. Soekirno, and H. A. Larassari, “Design and analysis of air quality monitoring system PM 10 and PM 2.5 integrated with weather parameters (a case study on Margonda Raya street Depok) Recent citations A CMOS Hall sensor modeling with readout circuitry and microcontroller processing for magnetic detection Hua Fan et al Design and analysis of air quality monitoring system PM10 and PM2.5 integrated with weather parameters (a case study on Margonda Raya street Depok),” Meas. Metrol. J. Phys. Conf. Ser., vol. 1528, p. 12053, 2020, doi: 10.1088/1742-6596/1528/1/012053.

Y.-N. Lin, S.-K. Wang, G.-J. Chiou, C.-Y. Yang, V. R. L Shen, and Z. Yang Su, “Development and Veriication of an IoT-Enabled Air Quality Monitoring System Based on Petri Nets,” doi: 10.21203/rs.3.rs-627459/v1.

H. A. Kusuma, R. Anjasmara, T. Suhendra, H. Yunianto, and S. Nugraha, “An IoT Based Coastal Weather and Air Quality Monitoring Using GSM Technology,” J. Phys. Conf. Ser., vol. 1501, no. 1, p. 012004, Mar. 2020, doi: 10.1088/1742-6596/1501/1/012004.

Z. Y. Su, Y. N. Lin, and V. R. L. Shen, “Intelligent Environmental Monitoring System based on LoRa Long Range Technology,” 2019 IEEE Eurasia Conf. IOT, Commun. Eng. ECICE 2019, pp. 354–357, 2019, doi: 10.1109/ECICE47484.2019.8942778.

C. A. Vargas Salgado, L. Montuori, P. Bastida Molina, and D. Alfonso Solar, “Arduino-based prototype to estimate heat stress indices in urban environments,” Proc. 5th CARPE Conf. Horiz. Eur. beyond, pp. 173–182, Oct. 2019, doi: 10.4995/CARPE2019.2019.10199.

P. Ihsan and T. Rahayu, “ANALISIS KESTABILAN PONDASI PADA MENARA TELEKOMUNIKASI,” Konstruksia, vol. 8, no. 2, pp. 53–70, Oct. 2017, doi: 10.24853/JK.8.2.53-70.

“Wind_Speed_Sensor_Voltage_Type_0-5V__SKU_SEN0170-DFRobot.” https://wiki.dfrobot.com/Wind_Speed_Sensor_Voltage_Type_0-5V__SKU_SEN0170 (accessed Jul. 17, 2021).

“Getting started | Grafana Labs.” https://grafana.com/docs/grafana/latest/getting-started/ (accessed Jul. 17, 2021).

“FAQ.” https://mqtt.org/faq/ (accessed Jul. 17, 2021).

“Eclipse Mosquitto.” http://mosquitto.org/ (accessed Jul. 17, 2021).

Published
2021-08-21
How to Cite
Rohendi, R., Herry Sujaini, Redi R. Yacoub, Bomo W. Sanjaya, & Purwoharjono. (2021). Desain Sistem Akuisisi Kecepatan Angin pada Menara SST Berbasis IoT. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 739 - 746. https://doi.org/10.29207/resti.v5i4.3307
Section
Artikel Teknologi Informasi