Analisis dan Implementasi Algoritma Asimetris Dual Modulus RSA (DM-RSA) pada Aplikasi Chat

  • Aminudin University of Muhammadiyah Malang
  • Ilyas Nuryasin Universitas Muhammadiyah Malang
Keywords: RSA algorithm, Dual Modulus RSA, Kraitchik Factorization


The RSA algorithm is one of the cryptographic algorithms with an asymmetric model where the algorithm has two keys, namely the public key and the private key. However, as time goes on, these algorithms are increasingly exposed to security holes and make this algorithm vulnerable to being hacked by people who do not have authority. The vulnerability stems from the algorithm's public keys (e and n). The strength of the RSA algorithm is based on the difficulty of factoring two prime numbers that are generated during the key generation process, if these values ​​can be known using certain methods, the public key and private key values ​​will be found. Therefore, there are many studies that improvise the RSA algorithm, one of which is the Dual Modulus RSA (DM-RSA) algorithm. The algorithm uses four prime numbers which produce 2 modulus and 4 keys (2 public keys and 2 private keys). From the results of the Kraitchik factorization test, it was found that the DM-RSA algorithm was proven to be more resistant up to 2 times or even more than the standard RSA algorithm. This is evidenced by the fact that the value of n is 24 bits, the RSA algorithm can last up to 63204 ms (1 minute 22 seconds) while the Dual Modulus RSA algorithm lasts up to 248494123 ms (142 minutes 47 seconds).



Download data is not yet available.


A. Aminudin, G. P. Aditya, and S. Arifianto, “RSA algorithm using key generator ESRKGS to encrypt chat messages with TCP/IP protocol,” J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 113–120, 2020, doi: 10.14710/jtsiskom.8.2.2020.113-120.

A. Aminudin and E. Budi Cahyono, “A Practical Analysis of the Fermat Factorization and Pollard Rho Method for Factoring Integers,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 12, no. 1, p. 33, 2021, doi: 10.24843/lkjiti.2021.v12.i01.p04.

N. T. E. Hermawan, E. Winarko, and A. Ashari, “Multi prime numbers principle to expand implementation of CRT method on RSA algorithm,” AIP Conf. Proc., vol. 2331, no. April, 2021, doi: 10.1063/5.0041856.

R. Thiyagarajan and B. Meenakshi Priya, “An enhancement of EAACK using P2P ACK and RSA public key cryptography,” Meas. J. Int. Meas. Confed., vol. 136, no. December, pp. 116–121, 2019, doi: 10.1016/j.measurement.2018.12.031.

A. Aminudin, A. F. Helmi, and S. Arifianto, “Analisa Kombinasi Algoritma Merkle-Hellman Knapscak dan Logaritma Diskrit pada Aplikasi Chat,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, pp. 325–334, 2018, doi:

A. Purnomo Sidik, S. Efendi, and S. Suherman, “Improving One-Time Pad Algorithm on Shamir’s Three-Pass Protocol Scheme by Using RSA and ElGamal Algorithms,” J. Phys. Conf. Ser., vol. 1235, no. 1, pp. 0–7, 2019, doi: 10.1088/1742-6596/1235/1/012007.

M. G. Kamardan, N. Aminudin, N. Che-Him, S. Sufahani, K. Khalid, and R. Roslan, “Modified Multi Prime RSA Cryptosystem,” J. Phys. Conf. Ser., vol. 995, no. 1, pp. 0–6, 2018, doi: 10.1088/1742-6596/995/1/012030.

Ü. Çavuşoğlu, A. Akgül, A. Zengin, and I. Pehlivan, “The design and implementation of hybrid RSA algorithm using a novel chaos based RNG,” Chaos, Solitons and Fractals, vol. 104, pp. 655–667, 2017, doi: 10.1016/j.chaos.2017.09.025.

I. Al-Barazanchi, S. A. Shawkat, M. H. Hameed, and K. S. L. Al-Badri, “Modified RSA-based algorithm: A double secure approach,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 6, pp. 2818–2825, 2019, doi: 10.12928/TELKOMNIKA.v17i6.13201.

B. Swami, R. Singh, and S. Choudhary, “Dual Modulus RSA Based on Jordan-totient Function,” Procedia Technol., vol. 24, pp. 1581–1586, 2016, doi: 10.1016/j.protcy.2016.05.143.

How to Cite
Aminudin, & Ilyas Nuryasin. (2021). Analisis dan Implementasi Algoritma Asimetris Dual Modulus RSA (DM-RSA) pada Aplikasi Chat . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 768 - 773.
Artikel Teknologi Informasi