Evaluasi Pengaruh Parameter TIM Berdasarkan Multirate Terhadap Konsumsi Energi Jaringan IEEE 802.11ah

  • Daifi Afrila Riefi Universitas Syiah Kuala
  • Teuku Yuliar Arif Universitas Syiah Kuala
  • Syahrial Universitas Syiah Kuala
Keywords: Multirate, Traffic Indication Map, Sleep Duration, Energy Consumption, Packet Delay, NS-3, IEEE 802.11ah


WLAN IEEE 802.11ah is wireless standard technology which potentially used for IoT networking to provide longer range transmission than WPAN and LPWAN. MAC layer IEEE 802.11ah introduces TIM segmentation scheme that provides effective management toward STA in large amount to make the energy consumption efficiently. STA is organized in hierarchical structure that allows TIM segmentation to reduce the length of frame beacon contains TIM. In case there’s no segmentation in a network with many STA, the TIM would be longer and requires all STA to wake-up receiving beacon TIM including STA without downlink data. This research intends to evaluate and analyze the TIM optimal parameters. Those are Page Period, Page Slice Length and Page Slice Count toward IEEE 802.11ah energy efficiency based on multirate using simulator NS-3 implemented on IEEE 802.11ah. As the result of STA experiment shows that Non-TIM is only optimal on sleep duration while TIM is optimal on energy consumption and delay packet. In the experiment of impact of STA/Slot amount based on Page Slice Length shows that sleep duration and energy consumption is optimal depends on the amount of the STA/Slot and data rate used while the optimal packet delay varies for each Page Slice Length.



Download data is not yet available.


L. Tian et al., “Optimization-Oriented RAW Modeling of IEEE 802.11ah Heterogeneous Networks,” IEEE Internet Things J., vol. 6, no. 6, pp. 10597–10609, 2019, doi: 10.1109/JIOT.2019.2940251.

J. Famaey, “The Long Life of IoT Devices : Comparing the Energy COMPARING THE ENERGY CONSUMPTION OF SUB-1GHZ WIRELESS TECHNOLOGIES,” no. March, 2020.

M. Park, “IEEE 802.11ah: Sub-1-GHz license-exempt operation for the internet of things,” IEEE Commun. Mag., vol. 53, no. 9, pp. 145–151, 2015, doi: 10.1109/MCOM.2015.7263359.

S. Aust, R. V. Prasad, and I. G. M. M. Niemegeers, “IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi,” IEEE Int. Conf. Commun., pp. 6885–6889, 2012, doi: 10.1109/ICC.2012.6364903.

Y. Zhou, H. Wang, S. Zheng, and Z. Z. Lei, “Advances in IEEE 802.11ah standardization for machine-type communications in sub-1GHz WLAN,” 2013 IEEE Int. Conf. Commun. Work. ICC 2013, pp. 1269–1273, 2013, doi: 10.1109/ICCW.2013.6649432.

S. Aust, R. V. Prasad, and I. G. M. M. Niemegeers, “Outdoor Long-Range WLANs: A Lesson for IEEE 802.11ah,” IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1761–1775, 2015, doi: 10.1109/COMST.2015.2429311.

E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on IEEE 802.11ah: An enabling networking technology for smart cities,” Comput. Commun., vol. 58, no. May 2014, pp. 53–69, 2015, doi: 10.1016/j.comcom.2014.08.008.

I. S. I. 8802-11, “Information technology -- Telecommunications and information exchange between systems -- Local and metropolitan area networks -- Specific requirements -- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” ANSI/IEEE Std 802.11, 2010 Ed., vol. 1999, no. June, pp. i–513, 1999.

V. Baños-Gonzalez, M. S. Afaqui, E. Lopez-Aguilera, and E. Garcia-Villegas, “IEEE 802.11ah: A technology to face the IoT challenge,” Sensors (Switzerland), vol. 16, no. 11, 2016, doi: 10.3390/s16111960.

Y. Zhao, O. N. C. Yilmaz, and A. Larmo, “Optimizing M2M energy efficiency in IEEE 802.11ah,” 2015 IEEE Globecom Work. GC Wkshps 2015 - Proc., pp. 2–7, 2015, doi: 10.1109/GLOCOMW.2015.7414004.

S. Zheng and Z. Lei, “TIM encoding for IEEE 802.11ah based WLAN,” 2014 IEEE Int. Conf. Commun. Syst. IEEE ICCS 2014, pp. 559–563, 2014, doi: 10.1109/ICCS.2014.7024865.

L. Tian, A. Šljivo, S. Santi, E. De Poorter, J. Hoebeke, and J. Famaey, “Extension of the IEEE 802.11ah ns-3 simulation module,” ACM Int. Conf. Proceeding Ser., no. May, pp. 53–60, 2018, doi: 10.1145/3199902.3199906.

A. Šljivo et al., “Performance evaluation of IEEE 802.11ah networks with high-throughput bidirectional traffic,” Sensors (Switzerland), vol. 18, no. 2, pp. 1–28, 2018, doi: 10.3390/s18020325.

A. Bel, T. Adame, and B. Bellalta, “An energy consumption model for IEEE 802.11ah WLANs,” Ad Hoc Networks, vol. 72, pp. 14–26, 2018, doi: 10.1016/j.adhoc.2018.01.005.

B. Ji, S. Chen, K. Song, C. Li, H. Chen, and Z. Li, “Throughput enhancement schemes for IEEE 802.11ah based on multi-layer cooperation,” IWCMC 2015 - 11th Int. Wirel. Commun. Mob. Comput. Conf., pp. 1112–1116, 2015, doi: 10.1109/IWCMC.2015.7289238.

T. Kim and J. M. Chang, “Enhanced Power Saving Mechanism for Large-Scale 802.11ah Wireless Sensor Networks,” IEEE Trans. Green Commun. Netw., vol. XX, no. XX, pp. 1–1, 2017, doi: 10.1109/TGCN.2017.2727056.

L. Tian, S. Deronne, S. Latré, and J. Famaey, “Implementation and Validation of an IEEE 802.11ah Module for ns-3,” Proc. Work. ns-3 - WNS3 ’16, no. January, pp. 49–56, 2016, doi: 10.1145/2915371.2915372.

A. Hazmi, J. Rinne, and M. Valkama, “Feasibility study of IEEE 802.11ah radio technology for IoT and M2M use cases,” 2012 IEEE Globecom Work. GC Wkshps 2012, no. December, pp. 1687–1692, 2012, doi: 10.1109/GLOCOMW.2012.6477839.

M. Lacage and T. R. Henderson, “Yet another network simulator,” ACM Int. Conf. Proceeding Ser., vol. 202, 2006, doi: 10.1145/1190455.1190467.

How to Cite
Riefi, D. A., Arif, T. Y., & Syahrial. (2021). Evaluasi Pengaruh Parameter TIM Berdasarkan Multirate Terhadap Konsumsi Energi Jaringan IEEE 802.11ah. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 713 - 720. https://doi.org/10.29207/resti.v5i4.3224
Artikel Teknologi Informasi