Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN

  • Lia Farokhah STMIK Asia Malang
Keywords: Face detection, Open CV, Dlib, Performance comparison

Abstract

Comparison of methods in face detection is needed to provide recommendation of best method. This study compared three methods in face detection, namely OpenCV haar cascade, OpenCV Single Shot Multibox Detector (SSD) and Dlib CNN. Face detection is focused on five challenging conditions, namely face detection in head position obstacles, wearing face masks, lighting, background images that have a lot of noise, differences in expression. Data testing is taken randomly on google with reference to one image consisting of more than one detected face with wild condition. The results of the comparative analysis in wild condition show that the OpenCV haar cascade has more weaknesses with a performance percentage of 20% compared OpenCV SSD and Dlib CNN method. Performance results of SSD and Dlib CNN have the same performance in the five conditions tested, which is about 80%.

 

Downloads

Download data is not yet available.

References

D. Suprianto, “Sistem Pengenalan Wajah Secara Real-Time,” Sist. Pengenalan Wajah Secara Real-Time dengan Adab. Eig. PCA MySQL, vol. 7, no. 2, pp. 179–184, 2013.

R. Wiryadinata, R. Sagita, S. Wardoyo, and Priswanto, “Face Recognition on Attendance System Using Method Of Dynamic Times, Principal Component Analysis, and Gabor Wavelet,” Issn 1858-3075, vol. 12, no. 1, pp. 1–8, 2016.

L. Farokhah, “Implementasi Convolutional Neural Network untuk Klasifikasi Variasi Intensitas Emosi pada Dynamic Image Sequence,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1070–1076, 2020, doi: 10.29207/resti.v4i6.2644.

S. Li and W. Deng, “Deep Facial Expression Recognition: A Survey,” IEEE Trans. Affect. Comput., vol. 3045, no. c, pp. 1–1, 2020, doi: 10.1109/taffc.2020.2981446.

K. Takayama, H. Johan, T. Nishita, and Takayama et al., “Face detection and face recognition of cartoon characters using feature extraction,” Image, Electron. Vis. Comput. Work., p. 48, 2012.

S. Zafeiriou, C. Zhang, and Z. Zhang, “A survey on face detection in the wild: Past, present and future,” Comput. Vis. Image Underst., vol. 138, no. March, pp. 1–24, 2015, doi: 10.1016/j.cviu.2015.03.015.

M. Fransiska Sisilia, F. Lia, and A. Nur Lailatul, “Pemodelan sistem deteksi wajah sebagai penghitung jumlah penumpang transportasi publik,” J. Resist. (Rekayasa Sist. Komputer), vol. 4, no. 1, pp. 67–77, 2021.

S. Abidin, “Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab,” J. Teknol. Elekterika, vol. 15, no. 1, p. 21, 2018, doi: 10.31963/elekterika.v15i1.2102.

A. Priadana and M. Habibi, “Face detection using haar cascades to filter selfie face image on instagram,” Proceeding - 2019 Int. Conf. Artif. Intell. Inf. Technol. ICAIIT 2019, pp. 6–9, 2019, doi: 10.1109/ICAIIT.2019.8834526.

T. Mantoro, M. A. Ayu, and Suhendi, “Multi-Faces Recognition Process Using Haar Cascades and Eigenface Methods,” Int. Conf. Multimed. Comput. Syst. -Proceedings, vol. 2018-May, pp. 1–5, 2018, doi: 10.1109/ICMCS.2018.8525935.

X. Ziwei et al., “Face Occlusion Detection Based on SSD Algorithm,” ICEIEC 2020 - Proc. 2020 IEEE 10th Int. Conf. Electron. Inf. Emerg. Commun., pp. 362–365, 2020, doi: 10.1109/ICEIEC49280.2020.9152335.

A. Rosebrock, Deep Learning for Computer Vision With Python, 3rd ed. United States of America: PyImageSearch, 2018.

P. Arun, “CNN based face detector from dlib,” Toward Data Science, 2018. https://towardsdatascience.com/cnn-based-face-detector-from-dlib-c3696195e01c (accessed May 21, 2021).

Published
2021-06-29
How to Cite
Lia Farokhah. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 609 - 614. https://doi.org/10.29207/resti.v5i3.3125
Section
Artikel Teknologi Informasi