Sistem Pemantau Kondisi Lingkungan Pertanian Tanaman Pangan dengan NodeMCU ESP8266 dan Raspberry Pi Berbasis IoT

  • Agus Ambarwari Politeknik Negeri Lampung
  • Dewi Kania Widyawati Politeknik Negeri Lampung
  • Anung Wahyudi Politeknik Negeri Lampung
Keywords: precision agriculture, monitoring system, IoT, Node-RED, MQTT

Abstract

The increasing need for food is not in line with the clearing of agricultural land for food crops. So that the effort to increase the productivity of agricultural products is by applying precision agriculture. However, in reality, precision agriculture is difficult to apply to conventional processes, where farmers come to the farm, collect data, then carry out maintenance. This method will make production results not optimal because maintenance is not done accurately. This study introduces a monitoring system for environmental conditions based on the Internet of Things (IoT) for agricultural land, where trials are carried out in a greenhouse. The system that has been developed consists of several sensors designed to collect information related to agricultural environmental conditions, including DHT22 sensor (temperature and humidity), DS18B20 sensor (soil temperature), soil moisture sensor (moisture content in the soil), and BH1750 sensor (light intensity). Based on the Message Queuing Telemetry Transport (MQTT) protocol, the data is sent to a gateway (Raspberry Pi) and a local server via a wireless network to be stored in a database. By using the Node-RED Dashboard, the received sensor data is then displayed on the browser every time the sensor sends data. In addition, the local server also publishes sensor data to the public MQTT broker so that sensor data can be accessed through the MQTT Dashboard application on a smartphone. The results of testing for 25 days of the system running obtained an average success of the system in storing data of 99.64%.

Downloads

Download data is not yet available.

References

O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, dan M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J., vol. 5, no. 5, hlm. 3758–3773, 2018, doi: 10.1109/JIOT.2018.2844296.

M. C. Vuran, A. Salam, R. Wong, dan S. Irmak, “Internet of underground things in precision agriculture: Architecture and technology aspects,” Ad Hoc Networks, vol. 81, hlm. 160–173, 2018, doi: 10.1016/j.adhoc.2018.07.017.

Beecham Research Limited, “Towards Smart Farming: Agriculture Embracing The IoT vision,” 2014. [Daring]. Tersedia pada: https://www.beechamresearch.com/files/BRL Smart Farming Executive Summary.pdf.

V. N. Malavade dan P. K. Akulwar, “Role of IoT in Agriculture,” IOSR J. Comput. Eng., hlm. 56–57, 2016.

Hariyanto dkk., Luas Lahan Menurut Penggunaan, 2015. Jakarta: Badan Pusat Statistik, 2016.

A. T. Balafoutis dkk., Smart Farming Technologies – Description, Taxonomy and Economic Impact. 2017.

ISPA, “Precision Ag Definition,” International Society for Precision Agriculture (ISPA), 2019. https://www.ispag.org/about/definition (diakses Mar 19, 2020).

A. Khattab, A. Abdelgawad, dan K. Yelmarthi, “Design and implementation of a cloud-based IoT scheme for precision agriculture,” Proc. Int. Conf. Microelectron. ICM, vol. 0, hlm. 201–204, 2016, doi: 10.1109/ICM.2016.7847850.

T. A. A. Ali, V. Choksi, dan M. B. Potdar, “Precision Agriculture Monitoring System using Green Internet of Things (G-IoT),” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 4, hlm. 481–487, 2018, doi: 10.22214/ijraset.2018.4493.

W. Abdallah, M. Khdair, M. Ayyash, dan I. Asad, “IoT system to control greenhouse agriculture based on the needs of Palestinian farmers,” dalam ICFNDS ’18: Proceedings of the 2nd International Conference on Future Networks and Distributed, 2018, no. 8, hlm. 1–9, doi: 10.1145/3231053.3231061.

M. Stočes, J. Vaněk, J. Masner, dan J. Pavlík, “Internet of things (IoT) in agriculture - Selected aspects,” Agris On-line Pap. Econ. Informatics, vol. 8, no. 1, hlm. 83–88, 2016, doi: 10.7160/aol.2016.080108.

C. Verdouw, S. Wolfert, dan B. Tekinerdogan, “Internet of things in agriculture,” CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., vol. 11, no. October 2017, 2016, doi: 10.1079/PAVSNNR201611035.

S. Heble, A. Kumar, K. V. V. D. Prasad, S. Samirana, dan P. Rajalakshmi, “A low power IoT network for smart agriculture,” IEEE World Forum Internet Things, WF-IoT 2018 - Proc., vol. January, hlm. 609–614, 2018, doi: 10.1109/WF-IoT.2018.8355152.

S. R. Prathibha, A. Hongal, dan M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” Proc. - 2017 Int. Conf. Recent Adv. Electron. Commun. Technol. ICRAECT 2017, hlm. 81–84, 2017, doi: 10.1109/ICRAECT.2017.52.

D. K. Widyawati, A. Ambarwari, dan A. Wahyudi, “Design and Prototype Development of Internet of Things for Greenhouse Monitoring System,” dalam 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2020, 2020, hlm. 389–393, doi: 10.1109/ISRITI51436.2020.9315487.

S. Trilles, A. González-Pérez, dan J. Huerta, “A comprehensive IoT node proposal using open hardware. A smart farming use case to monitor vineyards,” Electron., vol. 7, no. 12, 2018, doi: 10.3390/electronics7120419.

D. Liu, X. Cao, C. Huang, dan L. Ji, “Intelligent agriculture greenhouse environment monitoring system based on IOT technology,” Proc. - 2015 Int. Conf. Intell. Transp. Big Data Smart City, ICITBS 2015, hlm. 487–490, 2016, doi: 10.1109/ICITBS.2015.126.

I. Mohanraj, K. Ashokumar, dan J. Naren, “Field Monitoring and Automation Using IOT in Agriculture Domain,” Procedia Comput. Sci., vol. 93, no. September, hlm. 931–939, 2016, doi: 10.1016/j.procs.2016.07.275.

J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, dan P. Nillaor, “IoT and agriculture data analysis for smart farm,” Comput. Electron. Agric., vol. 156, no. November 2018, hlm. 467–474, 2019, doi: 10.1016/j.compag.2018.12.011.

S. Abaya, L. De Vega, J. Garcia, M. Maniaul, dan C. A. Redondo, “A self-activating irrigation technology designed for a smart and futuristic farming,” 2017 Int. Conf. Circuits, Devices Syst. ICCDS 2017, vol. 2017-Janua, hlm. 189–194, 2017, doi: 10.1109/ICCDS.2017.8120476.

BPPSDMP, “Pemanfaatan Teknologi Drone untuk Bertani,” Badan Penyuluhan dan Pengembangan Sumber Daya Manusia Pertanian Kementerian Pertanian, 2018. http://bppsdmp.pertanian.go.id/id/blog/post/Pemanfaatan_Teknologi_Drone_untuk_Bertani (diakses Mar 19, 2020).

K. Hariyanto dan D. W. Santoso, “Pengembangan Sistem Penyemprotan pada Platform Pesawat Tanpa Awak Berbasis Quadcoper untuk Membantu Petani Mengurangi Biaya Pertanian dalam Mendorong Konsep Pertanian Pintar (Smart Farming),” J. Nas. Teknol. Terap., vol. 1, no. 1, hlm. 87–97, 2017, doi: 10.22146/jntt.35168.

V. Lohchab, M. Kumar, G. Suryan, V. Gautam, dan R. K. Das, “A Review of IoT based Smart Farm Monitoring,” Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, no. Icicct, hlm. 1620–1625, 2018, doi: 10.1109/ICICCT.2018.8473337.

A. Goap, D. Sharma, A. K. Shukla, dan C. Rama Krishna, “An IoT based smart irrigation management system using Machine learning and open source technologies,” Comput. Electron. Agric., vol. 155, no. May, hlm. 41–49, 2018, doi: 10.1016/j.compag.2018.09.040.

Published
2021-06-19
How to Cite
Ambarwari, A., Dewi Kania Widyawati, & Anung Wahyudi. (2021). Sistem Pemantau Kondisi Lingkungan Pertanian Tanaman Pangan dengan NodeMCU ESP8266 dan Raspberry Pi Berbasis IoT. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 496 - 503. https://doi.org/10.29207/resti.v5i3.3037
Section
Artikel Teknologi Informasi