Prediksi Jumlah Produksi Akibat Penyebaran Covid-19 Menggunakan Metode Fuzzy Takagi-Sugeno

  • Khofifah Putriyani Institut Teknologi Telkom Purwokerto
  • Tenia Wahyuningrum Institut Teknologi Telkom Purwokerto
  • Yogo Dwi Prasetyo Institut Teknologi Telkom Purwokerto
Keywords: production, food, sugeno, Covid-19, MAPE

Abstract

Global Bakery is a food company engaged in bread production that is having difficulty determining how much bread will be produced in the event of a pandemic. This study aims to help predict the amount of bread that will be produced during a pandemic. With the benefit of making it easier for companies to determine the amount of bread to be produced. Data obtained from Global Bakery and the official website of Covid-19 Bekasi Regency from March 20, 2020 to April 20, 2020. The author uses the Fuzzy Takagi-Sugeno method to predict the amount of bread that must be produced by Global Bakery during a pandemic with the following stages: fuzzification, rule formation, calculating ɑ-predicate and zi value, then calculating defuzification. Then an evaluation is carried out using the Mean Absolute Percentage Error (MAPE). This study uses Matlab's GUI tools in implementing the Predictor program. The Fuzzy Takagi-Sugeno method is able to predict the amount of bread production at Global Bakery with optimal results, where if the sales are 180 pieces, the remaining sales are 289, and the number of positive cases of Covid-19 is 6 people with the actual production number of 469 pieces, then The prediction results obtained were 347 units. The results of the calculations that have been done obtained the results of accuracy with a good category, namely with a MAPE value of 18.6%.

 

Downloads

Download data is not yet available.

References

S. Yezli and A. Khan, “COVID-19 social distancing in the Kingdom of Saudi Arabia: Bold measures in the face of political, economic, social and religious challenges,” J. Elsevier, no. January, 2020.

C. Sohrabi et al., “World Health Organization declares global emergency : A review of the 2019 novel coronavirus ( COVID-19 ),” Int. J. Surg., vol. 76, no. February, pp. 71–76, 2020.

Kementerian Kesehatan Republik Indonesia, “Penetapan Pembatasan Sosial Berskala Besar di Wilayah Kabupaten Bogor, Kota Bogor, Kota Depok, Kabupaten Bekasi, dan Kota Bekasi, Provinsi Jawa Barat dalam Rangka Percepatan Penanganan Coronavirus Disease 2019 (Covid-19),” 2020.

A. Weber, F. Iannelli, and S. an Gon calves, “Trend Analysis of The COVID-19 Pandemic In China And The Rest of The World,” 2020.

A. M. Al-awadhi, K. Alsaifi, A. Al-awadhi, and S. Alhammadi, “Death and Contagious Infectious Diseases : Impact Of The COVID-19 Virus On Stock Market Returns,” J. Behav. Exp. Financ., vol. 27, p. 100326, 2020, doi: 10.1016/j.jbef.2020.100326.

W. Hadiwardoyo, “Kerugian Ekonomi Nasional Akibat Pandemi Covid-19,” Baskara J. Bus. Entrep., vol. 2, no. 2, pp. 83–92, 2020, doi: 10.24853/baskara.2.2.83-92.

L. Costaner and G. Wenny Syafitri, “Optimasi Jumlah Produksi Usaha Dagang Roti Prima Sari Menggunakan Metode Logika Fuzzy,” J. Sist. Inf., vol. 8, no. September, pp. 424–435, 2019.

S. Pinontoan, I. A. Musdar, and Hasniati, “Penerapan Logika Fuzzy Metode Sugeno Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Persediaan Dan Jumlah Permintaan (Studi Kasus: Pabrik Roti Sarinda Ambon),” J. Ilmu Mat. dan Terap., vol. 9, pp. 121–134, 2015.

X. Liu, S. Member, Z. Gao, S. Member, M. Z. Q. Chen, and S. Member, “Takagi – Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5678–5689, 2017, doi: 10.1109/TIE.2017.2677327.

D. M. Efendi and F. A. Ardhy, “Perbandingan Metode Fuzzy Inferensi Tsukamoto Dan Sugeno Untuk Memprediksi Pemesanan Roti Jordan,” J. Tekno Kompak, vol. 12, no. 2, p. 45, 2018, doi: 10.33365/jtk.v12i2.147.

S. Surhajito, J. Jimmy, and A. S. Girsang, “Mobile decision support system to determine Toddler’s nutrition using fuzzy sugeno,” Int. J. Electr. Comput. Eng., vol. 7, no. 6, pp. 3683–3691, 2017, doi: 10.11591/ijece.v7i6.pp3683-3691.

A. Ahmad, “Penerapan Sistem Inferensi Fuzzy Dengan Metode Sugeno Dalam Memperkirakan Produksi Gula,” vol. im, no. 2007, p. 3083, 2016.

J. Warmansyah and D. Hilpiah, “Penerapan metode fuzzy sugeno untuk prediksi persediaan bahan baku,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 9, no. 2, pp. 12–20, 2019, doi: 10.36350/jbs.v9i2.58.

A. Singh, N. Kashyap, and R. Garg, “Fuzzy based approach for diet prediction,” Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019, pp. 377–381, 2019, doi: 10.1109/CONFLUENCE.2019.8776917.

S. Kusumadewi and H. Purnomo, “Aplikasi Logika Fuzzy untuk Pendukung Keputusan,” 2nd ed., Yogyakarta, 2013, pp. 1–75.

S. Pinontoan, I. A. Musdar, and Hasniati, “Perbandingan Metode Fuzzy Sugeno Dengan Fuzzy Tsukamoto Pada Sistem Prediksi Harga Smartphone Bekas Berbasis Android Di Wilayah Makassar,” J. Ilmu Komput., pp. 34–42, 2019.

X. I. N. Tang and D. Ning, “A Takagi-Sugeno Fuzzy Model-Based Control Strategy for Variable Stiffness and Variable Damping Suspension,” IEEE Access, vol. 8, pp. 71628–71641, 2020, doi: 10.1109/ACCESS.2020.2983998.

A. I. Fahrika and J. Roy, “Dampak pandemi covid 19 terhadap perkembangan makro ekonomi di indonesia dan respon kebijakan yang ditempuh The impact of the Covid 19 pandemic on macroeconomic developments in Indonesia and the policy response taken,” J. Ekon. Keuang. dan Manaj., vol. 16, no. 2, pp. 206–213, 2020.

M. Irfan, L. P. Ayuningtias, and J. Jumadi, “Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani ( Studi Kasus : Prediksi Jumlah Pendaftar Mahasiswa Baru Fakultas Sains Dan Teknologi Uin Sunan Gunung Djati Bandung),” J. Tek. Inform., vol. 10, no. 1, pp. 9–16, 2018, doi: 10.15408/jti.v10i1.6810.

Laras Purwati Ayuningtias, Mohamad irfan, and Jumadi, “Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani (Studi Kasus : Prediksi Jumlah Pendaftar Mahasiswa Baru Fakultas Sains Dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung),” J. Tek. Inform., vol. 10, pp. 9–16, 2017.

Published
2021-04-28
How to Cite
Khofifah Putriyani, Wahyuningrum, T., & Dwi Prasetyo, Y. (2021). Prediksi Jumlah Produksi Akibat Penyebaran Covid-19 Menggunakan Metode Fuzzy Takagi-Sugeno. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 220 - 230. https://doi.org/10.29207/resti.v5i2.2973
Section
Artikel Rekayasa Sistem Informasi