Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas pada Cakupan Imunisasi Dasar Lengkap
Comparison of Clustering Methods in Grouping Puskesmas Data on Complete Basic Immunization Coverage
Abstract
The coverage of Health Care Center toward UCI (Universal Child Immunization) at Banyuwangi Regency in 2018 met the target 91%. Onfortunately with a high amount of immunization, the number of infant deaths reached 138 infants. Total number increased 111 from the previous year. A review of the complete basic immunization data needs to be done. In this research, a clustering method was proposed by comparing the K-Means and Fuzzy C-Means (FCM) algorithm in grouping Health Care Center data. Silhouette Coefficient and Standart Deviation were used to evaluate clusters that were perfomed to find out the accuracy in grouping data. The result showed that the FCM algorithm was better than K-Means based on Silhouette Coefficient results that were close to good, and the calculation of Standart Deviation had a smaller result that was 0.0918 than K-Means with the results of 0.0942. The Grouping of Heath Care Center data can be considered by the Health Department of Banyuwangi Regency in evaluating complete basic immunization services, especially in groups with poor immunization services to reduce infant and child mortality, so a disease that can be prevented with immunization become lower.
Downloads
References
Hudhah M, Hidajah, AC. (2017). Perilaku Ibu Dalam Imunisasi Dasar Lengkap Di Puskesmas Gayam Kabupaten Sumenep. Jurnal Promkes, Vol. 5, No. 2, hal: 167-180
Yundri, Setiawati, M, Suhartono, Setyawan, H, Budhi, K. (2017). Faktor Yang Berhubungan Dengan Ketidaklengkapan Status Imunisasi Anak Di Puskesmas Kuala Tungkal II, Jurnal Berkala Epidemiologi, Volume 5, Nomor 3, hal: 361-370
Wulansari, Nadjib, M. (2019). Determinan Cakupan Imunisasi Dasar Lengkap pada Penerima Program Keluarga Harapan, Jurnal Ekonomi Kesehatan Indonesia, Volume 4, Nomor 1
Yunizar, Asriwati, Hadi, AJ. (2018) “Perilaku Ibu Dalam Pemberian Imunisasi Dpt/Hb-Hib Di Desa Sinabang Kecamatan Simeulue Timur”, Jurnal Kesehatan Global, Vol. 1, No. 2, hal: 61-69
Dinas Kesehatan Banyuwangi. (2018). Profil Kesehatan 2018. Pemerintahan Kabupaten Banyuwangi
Kabupaten Banyuwangi. (2019). Data Seputar Kesehatan. Diakses dari: https://www.banyuwangikab.go.id/profil/profil-kesehatan.html
Sutoyo, H. (2018). Banyuwangi Kejadian Luar Biasa (KLB) Difteri. Diakses dari: radarbanyuwangi.jawapos.com, 20 Februari 2018
Rodiyansyah, SF. (2017). K-Means Dan Fuzzy C-Means Pada Analisis Data Polusi Udara Di Kota X. Seminar Nasional Teknologi Informasi dan Multimedia, hal: 25-29
Shedthi SB, Shetty, S, Siddappa, M. (2017). Implementation and Comparison of K-Means and Fuzzy C-Means Algorithms for Agricultural Data. International Conference on Inventive Communication and Computational Technologies (ICICCT)
Ramya, TB. (2018). Disease Prediction System Using Fuzzy C-Means Algorithm. International Journal of Engineering Research & Technology (IJERT)
Agustina, N, Prihandoko, (2018). Perbandingan Algoritma K-Means Dengan Algoritma Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan. Jurnal Rekayasa Sistem dan Teknologi Informasi (RESTI), Vol. 2, No. 3
Ramadhan, A, Efendi Z, Mustakim, (2017). Perbandingan K-Means dan Fuzzy C-Means untuk Pengelompokan Data User Knowledge Modeling, Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9
Talakua, MW, Leleury, ZA, Talluta, AW. (2017). Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014. Jurnal Ilmu Matematika dan Terapan, Vol. 11, No. 2, hal: 119 – 128
Suhaeni, C, Kurnia, A, Ristiyanti. (2018). Perbandingan Hasil Pengelompokan menggunakan Analisis Cluster Berhirarki, K-Means Cluster, dan Cluster Ensemble (Studi Kasus Data Indikator Pelayanan Kesehatan Ibu Hamil), Jurnal Media Infotama, Vol. 14, No. 1, hal: 31-38
Darmawan, Muhimmah, I, Kariyam, (2017). Identifikasi Masalah Kesehatan Di Sulawesi Tenggara. Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan (INFOKES), Vol. 7, No. 1
Rahmawati, Faisal, M. (2019). Analisis Cluster untuk Pengelompokan Desa Berdasarkan Indikator Penyakit Diare. jurnal SAINTIFIK, Vol. 5, No. 1, hal: 75-80
Syarif R, Furqon MT, Adinugroho S. (2018). Perbandingan Algoritme K-Means Dengan Algoritme Fuzzy C Means (FCM) Dalam Clustering Moda Transportasi Berbasis GPS, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 10
Simhachalam, B, Ganesan, G. (2014). Possibilistic Fuzzy C-Means Clustering On Medical Diagnostic Systems. International Conference on Contemporary Computing and Informatics (IC3I), hal: 1125–1129
Sangeetha J. (2017). An Efficient Inclusive Similarity Based Clustering (ISC) Algorithm for Big Data, World Congress on Computing and Communication Technologies (WCCCT)
Chusyairi, A, Saputra, PRN. (2019). Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering”, Jurnal Telematika, Vol. 12, No. 2
Wahyuni I, Auliya YA, Rahmi A, Mahmudy WF. (2016). Clustering Nasabah Bank Berdasarkan Tingkat Likuiditas Menggunakan Hybrid Particle Swarm Optimization dengan K-Means, Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA), Vol. 10, No. 02
Kusuma, BMA, Octastefani, T. (2015). Implementasi Program Jaminan Pelayanan Kesehatan Masyarakat Banyuwangi (JPKMB) Dalam Mewujudkan Pelayanan Kesehatan Primer Bagi Seluruh Lapisan Masyarakat. The Indonesian Journal of Public Administration (IJPA), Vol. 2, No. 1
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;