Prototype Pendeteksi Daerah Rawan Kecelakaan Berbasis Internet of Things

Prototype for Accident-Prone Area Detection Based on the Internet of Things

  • Yankotinu Al Qod'r Jonnata Institut Teknologi Telkom Purwokerto
  • Fahrudin Mukti Wibowo Institut Teknologi Telkom Purwokerto
  • Iqsyahiro Kresna A Institut Teknologi Telkom Purwokerto
Keywords: Blackspots, GPS, GSM, Internet of Things, Prototype

Abstract

The high number of deaths due to traffic accidents is still a problem for every country where Indonesia ranks third in Asia with 38,279 deaths according to the 2015 Global Status Report on Road Safety. Blackspots scattered in Indonesia has a role in contributing to the death rate, however not all blackspots are equipped with warning signs. Based on these problems then developed a prototype in the form of a device for detecting and website as the central information system of blackspots based Internet of Things. The prototype is designed using an Arduino Uno Rev 3 microcontroller equipped with a GPS module to measure vehicle speed and distance from the setpoint before arriving on blackspots, a GSM module to download blackspots data and upload speed and distance data to the database, and LED components, speakers/buzzer, OLED display to provide notification every time crossing the setpoint of blackspots. The usability testing performance measurement method is used to measure the performance of the device prototype and the black box testing method is used to validate each function of the website system. The results of this research obtained the success rate of the prototype device was 60% with the highest error rate of 19.09% at the 1500m setpoint for speed and 57.98% at 10m setpoint for the distance.

Downloads

Download data is not yet available.

References

R. Yulianto, “Analisis Karakteristik Lalu Lintas Lokasi Rawan Kecelakaan di Kota Bandar Lampung,” Bandar Lampung, 2013.

Y. Maulana, “70 Persen Jalan Provinsi di Jabar Belum Dilengkapi Fasilitas Lalu Lintas,” detiknews, 2020. [Online]. Available: https://news.detik.com/berita-jawa-barat/d-5176024/70-persen-jalan-provinsi-di-jabar-belum-dilengkapi-fasilitas-lalu-lintas. [Accessed: 03-Dec-2020].

Y. Anugrah, “Sampah Visual di Rambu Lalu Lintas Ganggu Pengemudi Kendaraan,” 2019. [Online]. Available: https://semarang.bisnis.com/read/20190822/535/1140023/sampah-visual-di-rambu-lalu-lintas-ganggu-pengemudi-kendaraan. [Accessed: 29-Nov-2019].

I. N. Winarsih, “Puluhan Rambu Lalu Lintas Jadi Sasaran Vandalisme,” 2019. [Online]. Available: https://www.republika.co.id/berita/pw636s384/puluhan-rambu-lalu-lintas-jadi-sasaran-vandalisme. [Accessed: 30-Nov-2019].

Karmilasari, K. Sekarwati, M. Iqbal, and D. Putri, “PEMANFAATAN FITUR STREET-VIEW PADA APLIKASI IDENTIFIKASI JENIS DAN PENEMPATAN RAMBU LALU LINTAS SEPANJANG JALAN IR . H . JUANDA DEPOK,” Semin. Nas. Teknol. Inf. Univ. Ibn Khaldun Bogor 2018, vol. 1, pp. 358–363, 2018.

I. Susanto, “PERANCANGAN BUKU INTERAKTIF PEMBELAJARAN RAMBU LALU LINTAS UNTUK ANAK KELAS 1-3 SD DENGAN MEDIA PENDUKUNG TEKNOLOGI AUGMENTED REALITY,” Semarang, 2018.

R. Banyumas, “Sembilan Titik Rawan Kecelakaan di Banyumas Diwaspadai,” Radar Banyumas, 2018. [Online]. Available: https://radarbanyumas.co.id/sembilan-titik-rawan-kecelakaan-di-banyumas-diwaspadai/. [Accessed: 29-Nov-2019].

R. Banyumas, “Angka Kecelakaan di Banyumas Meningkat,” Radar Banyumas, 2018. [Online]. Available: https://radarbanyumas.co.id/angka-kecelakaan-di-banyumas-meningkat/. [Accessed: 22-Oct-2020].

R. Banyumas, “Angka Kecelakaan di Banyumas Meningkat, Sudah 1.339 Peristiwa Sejak Awal Tahun,” Radar Banyumas, 2020. [Online]. Available: https://radarbanyumas.co.id/angka-kecelakaan-di-banyumas-meningkat-sudah-1-339-peristiwa-sejak-awal-tahun/. [Accessed: 03-Dec-2020].

H. M. Putri and A. S. Handayani, “Intelligent Transportation System dalam Sistem Monitoring Kecelakaan Lalu Lintas,” Annu. Res. Semin. 2018, vol. 4, no. 1, pp. 978–979, 2018.

A. Daerah, R. Kecelakaan, L. Lintas, S. Kasus, and K. Selatan, “Analisis Daerah Rawan Kecelakaan Lalu Lintas Studi Kasus (Jalan Gubernur Soebardjo – Landasan Ulin) Kalimantan Selatan,” J. Rekayasa Sipil, vol. 1, no. 1, pp. 50–59, 2013.

K. TV, “Edukasi Aturan Lalu Lintas Bagi Anak Usia Dini,” 2019. [Online]. Available: https://www.kompas.tv/article/39256/edukasi-aturan-lalu-lintas-bagi-anak-usia-dini. [Accessed: 01-Dec-2019].

W. Z. Kolo, “Empat Langkah Polisi Edukasi Kaum Milenial untuk Tertib Lalu Lintas,” 2019. [Online]. Available: https://www.jawapos.com/oto-dan-tekno/otomotif/17/01/2019/empat-langkah-polisi-edukasi-kaum-milenial-untuk-tertib-lalu-lintas/. [Accessed: 01-Dec-2019].

R. Thangavel, S. Athithan, S. Sarumathi, M. Aruna, and B. Nithila, “Blackspot Alert and Accident Prevention System,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol., pp. 1–6, 2019.

A. Z. Arfianto, N. G. M. B. Rahmat, A. S. Setiyoko, C. R. Handoko, and M. K. Hasin, “PERANGKAT INFORMASI DINI BATAS WILAYAH PERAIRAN INDONESIA UNTUK NELAYAN TRADISIONAL BERBASIS ARDUINO DAN MODUL GPS NEO-6M,” JOUTICA, vol. 3, no. 2, pp. 163–167, 2018.

C. W. Darmawan, S. R. U. A. Sompie, and F. D. Kambey, “Implementasi Internet of Things pada Monitoring Kecepatan Kendaraan Bermotor,” J. Tek. Elektro dan Komput., vol. 9, no. 2, 2020.

S. Utama, “Perbaikan User Interface Halaman Internet Banking dengan Usability Testing,” Depok, Indonesia, 2011.

N. Luh, P. Ari, N. Kadek, A. Wirdiani, and I. K. A. Purnawan, “Evaluasi Aspek Usability pada Aplikasi Simalu Menggunakan Metode Usability Testing,” MERPATI, vol. 7, no. 2, pp. 113–124, 2019.

S. Nidhra and J. Dondeti, “BLACK BOX AND WHITE BOX TESTING TECHNIQUES – A LITERATURE REVIEW,” Int. J. Embed. Syst. Appl., vol. 2, no. 2, pp. 29–50, 2012.

Published
2020-12-24
How to Cite
Yankotinu Al Qod’r Jonnata, Wibowo, F. M., & A, I. K. (2020). Prototype Pendeteksi Daerah Rawan Kecelakaan Berbasis Internet of Things. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(6), 1017 - 1027. https://doi.org/10.29207/resti.v4i6.2530
Section
Information Technology Articles