Validity Test of Self-Organizing Map (SOM) and K-Means Algorithm for Employee Grouping
Abstract
Managing employee work discipline needs to be done to support the development of an organization. One way to make it easier to manage employee work discipline is to group employees based on their level of discipline. This study aims to group employees based on their level of discipline using the Self Organizing Map (SOM) and K-Means algorithm. This grouping begins with collecting employee attendance data, then processing attendance data where one of them is determining the parameters to be used, then ending by implementing the clustering algorithm using the SOM and K-Means algorithms. The results of grouping that have been obtained from the implementation of the SOM and K-Means algorithms are then validated using an internal validation test consisting of the Dunn Index, the Silhouette Index and the Connectivity Index to obtain the best number of clusters and algorithms. The results of the validation test obtained 3 best clusters for the level of discipline, namely the disciplinary cluster, the moderate cluster and the undisciplined cluster.
Downloads
References
Pribadi, M. L., and Herlena, B., 2016. Peran Budaya Organisasi terhadap Disiplin Kerja Karyawan Direktorat Produksi PT Krakatau Steel (Persero) Tbk Cilegon. Psympathic Jurnal Ilmiah Psikologi, 3(2), pp. 225–234. doi: 10.15575/psy.v3i2.1112.
Rizki A, S. E., & Suprajang, 2017. Analisis Kedisiplinan Kerja dan Lingkungan Kerja terhadap Kinerja pada Karyawan PT Griya Asri Mandiri Blitar. Jurnal Penelitian Manajemen Terapan, 2, pp. 49–56.
Presiden Republik Indonesia, 2010. PP No. 53 Tahun 2010 Tentang Disiplin Pegawai Negeri Sipil, p. 95.
Asroni, R. A., 2015. Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang. Jurnal Ilmiah Semesta Teknika, 18(1), pp. 76–82. doi: 10.1038/hdy.2009.180.
Munawar, G., 2015. Implementasi Algoritma Self Organizing Map (SOM) untuk Clustering Mahasiswa pada Matakuliah Proyek (Studi Kasus : JTK POLBAN), In: IRWNS (Industrial Research Workshop and National Seminar), Prosiding 6th Industrial Research Workshop National Seminar. Politeknik Negeri Bandung, 19 November 2015, Politeknik Negeri Bandung: Bandung.
Nugroho, C. A., Hendrawan, R. A., and Hafidz, I., 2012. Clustering Kelompok Swadaya Masyarakat (KSM) dalam Menentukan Kebijakan Bantuan Badan Pemberdayaan Masyarakat di Kota Surabaya dengan Menggunakan Metode Self-Organizing Map (SOM) dan K-Means. Jurnal Teknik ITS, 1(1), pp. A368–A373.
Kapita, S. N., and Abdullah, S. Do., 2020. Pengelompokkan Data Mutu Sekolah Menggunakan Jaringan Syaraf Tiruan Kohonen-SOM. JIKO (Jurnal Informatika dan Komputer), 3(1), pp. 56–61. doi: 10.33387/jiko.
Khairati, A. F., Adlina, A., Hertono, G., & Handari, B., 2019. Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA. In: PRISMA (Prosiding Seminar Nasional Matematika), Prosiding Seminar Nasional Matematika. Semarang, 12 Februari 2019, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang: Semarang.
Halim, N. H., and Widodo, E., 2017. Clustering dampak gempa bumi di indonesia menggunakan kohonen self organizing maps, In: SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islam), Prosiding Seminar Nasional Integrasi Matematika dan Nilai Islam. Malang, 31 Juli 2017, Mathematisc Departement Universitas Islam Negeri Maulana Malik Ibrahim Malang: Malang.
Brock, G., Pihur, V., Datta, S., and Datta, S., 2008. clValid: An R Package for Cluster Validation. Journal of Statistical. Software, 25(4), pp. 1–22. doi: 10.18637/jss.v025.i04.
R. A. Hendrawan, A. Utamima, and D. A. Savitri, 2016. SEGMENTASI TRAFO LISTRIK MENGGUNAKAN ALGORITMA K-MEANS UNTUK MENDUKUNG EVALUASI KAPASITAS GARDU INDUK LISTRIK DI JAWA TIMUR. Jurnal Sistem Informasi, 5(5), pp. 702–707.
Marlina, D., Lina, N., Fernando, A., and Ramadhan, A., 2018. Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 4(2), p.64. doi: 10.24014/coreit.v4i2.4498.
Ariana, A. A. G. B., Darma Putra, I. K. G., and Linawati, L., 2017. Perbandingan Metode SOM/Kohonen dengan ART 2 pada Data Mining Perusahaan Retail. Majalah Ilmiah. Teknologi Elektro, 16(2), p.55. doi: 10.24843/mite.2017.v16i02p10
Sugiarto, D., Ariwibowo, A. A., Mardianto, I., Najih, M., and Hakim, L., 2018. Cluster analysis of Indonesian province based on prices of several basic food commodities. In: ICIC (International Conference on Informatics and Computing). Proceeding 3rd International. Conference Informatics Computing, IEEE, 17 Oktober 2018, United Nations: Indonesia. doi: 10.1109/IAC.2018.8780554.
Savitri, A. D., Bachtiar, F. A., and Setiawan, N. Y., 2018. Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus : Belle Crown Malang). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(9), pp. 2957–2966.
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;