Comparison of the Performance of Prediction Methods on Digital Wallet Transactions during the Pandemic
Perbandingan Kinerja Metode-Metode Prediksi pada Transaksi Dompet Digital di Masa Pandemi
Abstract
A pandemic situation such as Covid-19 which is still ongoing has given significant impacts to various sectors such as education, economy, tourism, and social which is in turn impacting the community at a national scale. On the other hand, the pandemic situation has also brought a positive impact on companies engaged in finance that utilizes information technology, namely digital wallets, a company that runs a market place in the digital world. In an effort to anticipate a dynamic market place, the company needs to predict the movement of transactions from time to time by building a model and performain the simulation to such model. Based on this problem, this paper presents simulations on the prediction models based on methods namely, naïve, Single Moving Average (SMA), Exponential Moving Average (EMA), combined SMA-naive methods, combined EMA-naive methods, as well as did the comparison of the best performance of every model by using Mean Absolute Percentage Error (MAPE) measurement. From the results of comparison, it is concluded that exponential moving average method delivers the best performance as prediction tool with MAPE of 23,4%.
Downloads
References
A. Apriliani, H. Zainuddin, A. Agussalim, dan Z. Hasanuddin, 2020 . Peramalan Tren Penjualan Menu Restoran Menggunakan Metode Single Moving Average. J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6.
A. Kumila, B. Sholihah, E. Evizia, N. Safitri, dan S. Fitri, 2019. Perbandingan Metode Moving Average dan Metode Naive Dalam Peramalan Data Kemiskinan. JTAM (Jurnal Teor. dan Apl. Mat., vol. 3, no. 1, pp. 65–73.
M. N. D. Sawitri, I. W. Sumarjaya, dan N. K. T. Tastrawati, 2018. Peramalan Menggunakan Metode Backpropagation Neural Network. E-Jurnal Mat., vol. 7, no. 3, pp. 264–270.
A. Nurlifa and S. Kusumadewi, 2017. Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky. INOVTEK Polbeng-Seri Inform., vol. 2, no. 1, pp. 18–25.
E. I. H. Rahayu, A. Yulianto, dan others, 2018. Analisis Peramalan Permintaan Mobil Mitsubishi Xpander dengan Tiga Metode Forecasting. Cakrawala-Jurnal Hum., vol. 18, no. 2, pp. 249–256.
R. H. Martiadi, T. H. Pudjiantoro, dan F. Renaldi, 2017. Pembangunan Perangkat Lunak Business Intelligence Di Dinas Perhubungan Kabupaten Bandung Barat. Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, pp. 433–440.
B. Brijs, 2016. Business analysis for business intelligence. CRC Press.
O. P. Rud, 2009. Business intelligence success factors: tools for aligning your business in the global economy, vol. 18. John Wiley & Sons.
J. Han, J. Pei, dan M. Kamber, 2011. Data mining: concepts and techniques. Elsevier.
M. J. Zaki, W. Meira Jr, dan W. Meira, 2014. Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press.
M. Ridwan, H. Suyono, dan M. Sarosa, 2013 . Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. J. EECCIS, vol. 7, no. 1, pp. 59–64.
D. Nachrowi and H. Usman, 2004. Teknik Pengambilan Keputusan. Grasindo.
J. E. Hanke dan D. W. Wichern, 2005. Business Forecasting, eight ed. Pearson Education, Inc., Upper Saddle River, New Jersey.
H. Utari, M. Mesran, dan N. Silalahi, 2016. Perancangan Aplikasi Peramalan Permintaan Kebutuhan Tenaga Kerja pada Perusahaan Outsourching menggunakan Algoritma Simple Moving Average. J. TIMES, vol. 5, no. 2, pp. 1–5.
M. Rosidi, 2017 . Sistem Peramalan Stok Oli Yamalube dengan Metode Single Exponential Smoothing pada Bengkel Zat Besi Cycles. Universitas Muhammadiyah Jember.
M. Astiningrum, Y. Pramitarini, dan A. Q. Windarto, 2017. Pengembangan sistem peramalan jumlah penggunaan tenaga listrik di PPPPTK VEDC Malang in Seminar Informatika Aplikatif Polinema. Malang. 20 Juni 2017.
N. Y. Zainun dan M. Z. A. Majid, 2003. Low Cost House Demand Predictor. Univ. Teknol. Malaysia, vol. 107.
N. A. Nugroho dan A. Purqon, 2015. Analisis 9 Saham Sektor Industri di Indonesia Menggunakan Metode SVR in Seminar Kontribusi Fisika. Bandung. 15 September 2015.
C. D. Lewis, 1982. Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
“Random.org - True Random Number Service.” [Online]. Available: random.org. [Accessed 10 Maret 2020]
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;