Identification of Types of Wood using Convolutional Neural Network with Mobilenet Architecture
Identifikasi Jenis Kayu menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet
Abstract
Indonesia is a wood producing with large number of forest and various type of trees in less than 4000 species of trees in Indonesia’s forest. The activity of wood identification is effort to get information about kind of wood. The identification type of wood that have similar characteristics, it is difficult to identify the right type of wood. The characteristic can be allotted to two group, general characteristic and anatomy characteristic. General characteristics can be seen directly by the senses without tools, while anatomy characteristics can be seen with tools such as loupe or microscope. Convolutional Neural Network with mobilenet architecture is a Deep Learning method that can be use identify and classifying an object. In this study, using 1000 images for 10 types of wood in each type. The images split into 90 images training dataset dan 10 images for validation datasets captured by mobilephone. Based on the result of research, the obtained level of accuracy 98% training, 93,3% testing, 28% recall, and 93% for precission. That result can be concluded that performance from this model in this research is optimal to classification the kind of wood.
Downloads
References
Martawijaya, Abdurahim Dkk. 2005. Atlas Kayu Jilid 1., Departemen Kehutanan Badan Penelitian dan Pengembangan Kehutananan, Bogor.
Gasim. 2014. Metode Identifikasi Jenis Kayu Berdasarkan Model Blok Citra Mikroskopis Penampang Lintang ., Program Studi S3 Ilmu Komputer, Jurusan Ilmu Komputer Dan Elektronika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada. Yogyakarta.
Nurhikmat, Triano. 2018. Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (Cnn) Pada Citra Wayang Golek. Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Islam Indonesia. Yogyakarta.
Howard, Andrew G et all. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobil eVision Applications., Google Inc
Flaurensi, Fera Dkk. Pengenalan Motif Batik Indonesia Menggunakan Deteksi Tepi Canny Dan Template Matching ., Jurnal Coding, Sistem Komputer Untan, Fakultas MIPA, Universitas Tanjungpura. Pontianak.
Atmaja, Ratri Dwi Dkk. 2012. Deteksi Jenis Kayu Citra Furniture Ukiran Jepara Menggunakan Jst Backpropagation ., Konferensi Nasional Sistem Informasi, STMIK – STIKOM. Bandung.
Trisyanto, Canggih. 2012. Sistem Identifikasi Kayu Ramin Berbasis Citra Menggunakan Local Binary Pattern Dan Probabilistic Neural Network . Departemen Ilmu Komputer, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Bogor.
Gasim. 2014. Metode Identifikasi Jenis Kayu Berdasarkan Model Blok Citra Mikroskopis Penampang Lintang ., Program Studi S3 Ilmu Komputer, Jurusan Ilmu Komputer Dan Elektronika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada. Yogyakarta.
Nurhikmat, Triano. 2018. Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (Cnn) Pada Citra Wayang Golek. Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Islam Indonesia. Yogyakarta.
Suartika, I Wayan. 2016. Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101. Jurnal Teknik Its, Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember (ITS). Surabaya.
Purba, Florensa Rosani Br. 2009. Rekayasa Sistem Neuro-Fuzzy Untuk Identifikasi Jenis Kayu Bangunan Dan Furniture ., Seminar Nasional Aplikasi Teknologi Informasi. Jakarta Barat.
Luo, Xingcheng Dkk. 2017. A Deep Convolution Neural Network Model for Vehicle Recognition and Face Recognitio., International Congress of Information and Communication Technology. China.
Shafira, Tiara. 2018. Implementasi Convolutional Neural Networks Untuk Klasifikasi Citra Tomat Menggunakan Keras., Jurusan Statistika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Islam Indonesia. Yogyakarta.
Hidayatullah, Priyanto. 2017. Pengolahan Citra Digital Teori dan Aplikasinya., Penerbit Informtika, Bandung.
“Deep Learning”. [Online]. Available :
https://warstek.com/2018/02/06/deepmachinelearning/. [ Diakses : 2 Agustus 2018 ]
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;