Application of Data Mining for Visit Prediction at Amikom Creative Economy Park
Abstract
A creative economy park is a place designed with strategic goals for technology skills collaboration, information and knowledge transfer, creation of innovative high-tech enterprises and entrepreneurs, introduction of new technology industries in creative economy enterprises to promote economic development. Yogyakarta Amikom University has been declared a Creative Economy Park and is known as Amikom Creative Economy Park (ACEP). ACEP includes multiple multimedia environments for targeting businesses such as software development, film, television, games, radio, animation, advertising, investment consulting, and project design. Every year, the number of institutions visiting Amikom Yogyakarta University carries the slogan Amikom Creative Economy Park with a fairly busy program of visits. The agenda for accepting this visit was carried out by Amikom's Public Relations Department (DKUI, Directorate of Public Relations and International Affairs). The evolution of visitor numbers from year to year, forecasts must be made to support the planning and preparation process when receiving visits. This research will discuss the trend of visitors having a comparative study in Amikom Creative Economy Park in the future. The data used in this study is visitor data from January 2019 to December 2019. This predictive data analysis uses the Autoregressive Integrated Moving Average (ARIMA) method and Exponential Smoothing as a comparison for the accuracy of the prediction. With the forecast of this visit, the planning and preparation for the Directorate of Public Relations and International Affairs and for the University AMIKOM Yogyakarta is to be done.
Downloads
References
Direktorat Kehumasan dan Urusan Internasional Universitas AMIKOM Yogyakarta, 2019. http://www.humas.amikom.ac.id. [02 Januari 2020].
Suyanto, Mohammad., Wibowo, F.W. “Animation Opportunities of Intellegent Multimedia System in Developing a Creative Economy Park”. International Conference on Information and Communications Technology (ICOIACT) pp. 69-74., 2018.
Anggriningrum, D.P., Hendikawati, P., dan Abidin, Z. 2013. Perbandingan Prediksi Harga Saham dengan Menggunakan Jaringa Syaraf Tiruan Backpropagation dan ARIMA. Unnes Journal of Mathematics. 2(2): 105-109.
Machmudin, A., Ulama, B.S.S. 2012. Peramalan Temperatur Udara di Kota Surabaya dengan Menggunakan ARIMA dan Artificial Neural Network. Jurnal Sains dan Seni ITS. 1(1): 118-123.
Istiqomah, Widia., Darsyah, M. Yamin., “Efektifitas Metode Arima dan Exponential Smoothing Untuk Meramalkan Nilai Tukar Petani di Jawa Tengah”, Seminar Nasional Mahasiswa Unimus Vol. 1, 2018.
Hendranata, Anton. ARIMA (Autoregressive Moving Average), Manajemen Keuangan Sektor Publik FEUI, 2003.
Makridakis, Spyros. , Steven C. Wheelwright, dan Victor E. McGee. Metode dan Aplikasi Peramalan, Jakarta: Erlangga, 1999.
M. Suyanto, The Success Secrets of Taiwan’s Worldwide SME in Creative Industries. Yogyakarta: Penerbit Andi, 2014.
Hanke, J.E., danWinchern, D.W. 2005. Business Forecasting. New Jersey: Pearson Education International.
Aziz, Syarfi., dkk. 2017. Penerapan Metode ARIMA untuk Peramalan Pengunjung Perpustakaan UIN Suska Riau. Seminar Nasional Teknologi Informasi, Komunikasi dan Industri(SNTIKI) 9, FST, UIN Sultan Syarif Kasim Riau.
Haryati, Siska. 2016. Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama Vol. 11 No. 2, September 2015, hlm 130-138.
Lingitz, Lucas. Dkk. 2018. Lead time prediction using machine learning algorithms : A case study by semiconductor manufactur. Procedia CIRP 72 (2018) 1051 – 1056. Elsevier.
Putro, Bossarito, dkk. 2018. Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Exponential Smoothing. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 2, No. 11, November 2018, hlm. 4679-4686.
Safitri, Tias. 2017. Perbandingan Peramalan Menggunakan Metode Exponential Smoothing Holt-Winters Dan Arima. UNNES Journal of Mathematics UJM 6 (1), hal. 48-58.
Suyanto, Dr. 2017. Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika.
Safitri, Tias., Dwidayati, N., Sugiman. 2017. Perbandingan Peramalan Menggunakan Metode Exponential Smoothing Holt Winters dan ARIMA. UNNES Journal of Mathematics, UJM 6(1) 2017.
Copyright (c) 2022 Journal of Systems Engineering and Information Technology (JOSEIT)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).