Optimization of Flood Prediction using SVM Algorithm to determine Flood Prone Areas
Abstract
Flooding is one thing that can slow down the economic pace in the affected area. Bandung is called the city of flowers and the city of fashion because the nickname makes Bandung a city with a variety of fashions growing in multiple places as a starting point for the buying and selling process. Not only did Bandung spawn fashions that became hits every year, but it also had many Meccas of traditional food preparation that were extraordinarily unique and interesting. Creating a flood-prone area model can make it easier to provide information for communities in Bandung Prefecture that belong to flood-prone and non-flood-prone areas. The SVM algorithm is a technique that can be used in the case of classification and regression, which is very popular lately. SVM is in a class with Artificial Neural Networks (ANN) in terms of features and conditions of problems that can be solved, and to be able to increase its accuracy it uses what can be optimized with PSO (Particle Swarm Optimization), where the test data is used BNPB official website data, BPS Bandung District and BMKG processed. The accuracy rate generated by using the SVM algorithm is 85.71% and the generated AUC is 0.841, while the accuracy rate generated by using the PSM-based SVM algorithm is 97.62%. and AUC produced at 1,000.
Downloads
References
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
Agus Ambarwari, Qadhli Jafar Adrian, Yeni Herdiyeni. 2020. Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learninguntuk Identifikasi Tanaman. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). Vol. 4 No. 1. 117–122. ISSN Media Elektronik: 2580-0760.
Y. Tang and I. Sutskever, “Data normalization in the learning of restricted Boltzmann machines,”in Department of Computer Science, University of Toronto, Technical Report UTML-TR-11-2, 2011
E. Sutoyo, I. T. R. Yanto, R. R. Saedudin, and T. Herawan, “A soft set-based co-occurrence for clustering web user transactions,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 15, no. 3, 2017.
E. Sutoyo, I. T. R. Yanto, Y. Saadi, H. Chiroma, S. Hamid, and T. Herawan, “A Framework for Clustering of Web Users Transaction Based on Soft Set Theory,” in Springer, 2019, pp. 307–314.
I. T. R. Yanto, E. Sutoyo, A. Apriani, and O. Verdiansyah, “Fuzzy Soft Set for Rock Igneous Clasification,” in 2018 International Symposium on Advanced Intelligent Informatics (SAIN), 2018, pp. 199–203.
E. Sutoyo, R. R. Saedudin, I. T. R. Yanto, and A. Apriani, “Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality,” in Electrical, Electronics and Information Engineering (ICEEIE), 2017 5th International Conference on, 2017, pp. 118–122.
M.-L. Antonie, O. R. Zaiane, and A. Coman, “Application of data mining techniques for medical image classification,” in Proceedings of the Second International Conference on Multimedia Data Mining, 2001, pp. 94–101.
R. R. Saedudin, E. Sutoyo, S. Kasim, H. Mahdin, and I. T. R. Yanto, “Attribute selection on student performance dataset using maximum dependency attribute,” in Electrical, Electronics and Information Engineering (ICEEIE), 2017 5th International Conference on, 2017, pp. 176–179.
H. Chiroma et al., “An intelligent modeling of oil consumption,” Adv. Intell. Syst. Comput., vol. 320, 2015.
A. R. Muhajir, E. Sutoyo, and I. Darmawan, “Forecasting Model Penyakit Demam Berdarah Dengue Di Provinsi DKI Jakarta Menggunakan Algoritma Regresi Linier Untuk Mengetahui Kecenderungan Nilai Variabel Prediktor Terhadap Peningkatan Kasus,” Fountain Informatics J., vol. 4, no. 2, pp. 33–40, Nov. 2019.
N. Iriadi and N. Nuraeni, “Kajian Penerapan Metode Klasifikasi Data Mining Algoritma C4.5 Untuk Prediksi Kelayakan Kredit Pada Bank Mayapada Jakarta,” J. Tek. Komput. AMIK BSI, vol. 2, 201
R Riszky, M Sadikin. 2019. Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer. 103-108.
RA Pangestu, S Rudiarto, D Fitrianah. 2018. Aplikasi Web berbasis Algoritma K-NEAREST NEIGHBOUR untuk Menentukan Klasifikasi Barang STUDI KASUS: PERUM PERURI. Jurnal Ilmu Teknik dan Komputer. Vol. 2 No. 1 Januari. ISSN 2548-740X E-ISSN 2621-1491.
Lukman.2016. Penerapan Algoritma Support Vector Machine (SVM) dalam Pemilihan Beasiswa: STUDI KASUS SMK YAPIMDA. Faktor Exacta 9(1): 49-57, 2016 ISSN: 1979-276X.
Haddi, E., Liu, X., & Shi, Y., 2013. The Role of Text Pre-processing in Sentiment Analysis. First International Conference on Information Technology and Quantitative Management, 17, 26–32. https://doi.org/10.1016/j.procs.2013.05.05
Nahriyatunnur Hidayatus Solihah1), Muliadi1) , Arie Antasari Kushadiwijayanto2*). 2018. Estimasi Parameter Model Curah Hujan Menggunakan Particle Swarm Optimization (PSO): Studi Kasus Ketapang dan Melawi. Jurnal Fisika FLUX. 13-19. Volume 15, Nomor 1. ISSN : 2514-1713.
Mauliana, P., 2016, Prediksi Banjir Sungai Citarum dengan Logika Fuzzy Hasil Algoritma Particle Swarm Optimization. INFORMATIKA, 3, 269-276.
Ary, M., 2017. Aplikasi Prediksi Banjir Metode Fuzzy Logic, Hasil Algoritma Spade dan Algoritma PSO. In: Konferensi Nasional Ilmu Sosial & Teknologi (KNiST), 342-348.
Nurmahaludin., 2013. Perancangan Algoritma Belajar Jaringan Syaraf Tiruan Menggunakan Particle Swarm Optimization (PSO). Jurnal POROS TEKNIK, 5(1),18-23.
Factmawati, M., Widodo, B., and Wahyuningsih, N., 2014. Estimasi Autoregressive Integrated Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto). Surabaya: Skripsi ITS.
Fikriya, Zulfa Afiq; Irawan, Mohammad Isa; Soetrisno, 2017. “Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital”, Jurnal Sains dan Seni ITS, Vol.6, No. 1. 2337-3520
Rahmansyah A., Dewi O., Andini P., Hastuti PN, Triana and Eka Suryana, Muhammad. 2016, Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine. Seminar Nasional Aplikasi Teknologi Informasi (SNATi) , 2018 p. A1 - A7.
Guyon, I., Weston, J., and Barnhill, S. (2002), Machine Learning, Gene Selection for Cancer Classification using Support Vector Machines, Netherland , Kluwer Academic Publishers.
Copyright (c) 2022 Journal of Systems Engineering and Information Technology (JOSEIT)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).