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Abstract  

Cervical cancer continues to pose a significant global health challenge, with early detection remaining the cornerstone for 

effective intervention. This study is situated at the intersection of clinical oncology and computational intelligence, exploring 

the potential of gradient-boosting algorithms to overcome the limitations of conventional screening methodologies. An 

XGBoost model was developed to predict cervical cancer risk. This model incorporates demographic, behavioral, and clinical 

parameters. The model was developed using data from 858 patients at the Hospital Universitario de Caracas. The 

preprocessing pipeline was designed to address the complexities inherent in medical data, including strategic management of 

missing values and standardizing heterogeneous features. The model demonstrated an overall accuracy of 96.3%, with a 

sensitivity of 66.7% and a specificity of 97.6%. This performance profile indicates adept navigation of the delicate balance 

between missed diagnoses and unnecessary interventions. Feature importance analysis revealed a multifaceted risk landscape, 

where screening test results contributed substantial predictive power (approximately 60%), complemented by demographic 

and behavioral factors, including age, reproductive history, and contraceptive usage patterns. The confusion matrix analysis 

revealed the clinical implications of the model predictions, demonstrating a promising positive predictive value of 55.0% 

despite the pronounced class imbalance. These findings suggest that ensemble learning approaches can effectively synthesize 

diverse patient data into meaningful risk assessments, potentially enhancing screening efficiency through personalized 

stratification. Future research directions include prospective validation across diverse populations, integration of longitudinal 

data, and further exploration of explainable AI techniques to bridge the gap between algorithmic predictions and clinical 

implementation. 
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1. Introduction  

The persistent burden of cervical cancer stands as a 

testament to both the remarkable progress and the 

enduring challenges in contemporary oncology [1]. 

Despite significant advances in preventive medicine 

and screening technologies, this malignancy continues 

to claim over 300,000 lives annually, with a 

disproportionate impact in resource-limited settings [2]. 

The narrative of cervical cancer—its pathogenesis 

intrinsically linked to human papillomavirus infection 

[3], its protracted natural history offering ample 

opportunity for intervention, and its potentially 

devastating consequences when detected late-presents 

both a public health imperative and a compelling 

analytical challenge [4], [5]. 

The evolution of cervical cancer screening has traversed 

a complex trajectory from the revolutionary 

Papanicolaou test introduced in the mid-20th century to 

contemporary molecular testing for high-risk HPV 

genotypes [6], [7]. However, despite this technological 

progression, the fundamental challenge persists: 

identifying those women most at risk within a 

predominantly healthy population while minimizing 

both the psychological burden of false alarms and the 

devastating consequences of missed diagnoses [8]. This 

screening paradox has prompted increasing interest in 

computational approaches that transcend the limitations 

of individual biomarkers or clinical heuristics [9]. 

The convergence of several transformative trends has 

created fertile ground for novel cervical cancer risk 

stratification approaches [10]. The exponential growth 
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in computing capacity has enabled the application of 

increasingly sophisticated algorithms on complex 

medical datasets [11]. The maturation of machine 

learning methodologies has shown remarkable success 

in pattern recognition tasks across various domains 

[10]-[13]. Multidimensional patient datasets spanning 

demographic, behavioral, and clinical domains offer 

unprecedented opportunities for risk modeling [14], 

[15]. 

Ensemble learning methods-particularly gradient 

boosting frameworks-have emerged as promising for 

medical risk prediction tasks [16], [17]. This seminal 

work introducing the XGBoost algorithm significantly 

advanced this domain, offering superior predictive 

performance and computational efficiency [18]. 

Subsequent applications in oncology have 

demonstrated the algorithm's capacity to synthesize 

diverse clinical markers into unified risk assessments 

that frequently surpass traditional statistical approaches 

[19], [20]. 

Previous studies exploring machine learning 

applications in cervical cancer have demonstrated 

encouraging results. The study implemented support 

vector machines to classify cervical cytology images, 

achieving 86% accuracy in distinguishing precancerous 

from normal cells [21]. Other researchers applied 

random forests to clinical data to predict high-grade 

cervical lesions, reporting an AUC of 0.82 [22]. 

However, these approaches have typically focused on 

single data modalities or limited feature sets, potentially 

missing the integrative potential of comprehensive 

patient profiling.  

Our research addresses these limitations through a 

comprehensive application of XGBoost to predict 

cervical cancer risk using a multidimensional dataset 

from Hospital Universitario de Caracas in Venezuela 

[23]. By integrating demographic information, 

reproductive history, behavioral risk factors, and 

screening test results, we aim to develop a predictive 

framework that captures the multifaceted nature of 

cervical carcinogenesis while providing clinically 

interpretable risk assessments. This approach aligns 

with the emerging paradigm of risk-based cancer 

screening, wherein personalized risk stratification 

replaces age-based or one-size-fits-all screening 

protocols [24], [25]. 

Beyond its immediate application to cervical cancer 

prediction, this research contributes to the broader 

discourse on integrating machine learning 

methodologies into clinical practice. By developing an 

interpretable, accessible prediction framework for a 

cancer that disproportionately affects disadvantaged 

populations, this work advances both the technical and 

ethical dimensions of machine learning applications in 

global health. 

2. Methods 

Our research employed a supervised machine learning 

approach to develop a predictive cervical cancer risk 

assessment model based on a cross-sectional dataset. 

The dataset, sourced from Hospital Universitario de 

Caracas in Venezuela via Kaggle's public repository, 

comprised records from 858 patients who underwent 

cervical cancer screening between 2017-2018 [26]. The 

data collection protocol included demographic 

information, behavioral risk factors, medical history, 

and diagnostic test results—creating a comprehensive 

portrait of each patient's risk profile spanning multiple 

domains of potential carcinogenic influence. 

The ethical framework governing this research 

prioritized patient privacy; all records were de-

identified prior to analysis by standard medical research 

protocols. Each patient profile encompassed 36 distinct 

features, including continuous variables (e.g., age, years 

of contraceptive use), binary indicators (e.g., STD 

status, smoking status), and categorical outcomes 

(diagnostic test results). The target variable—biopsy 

result—represented the definitive diagnostic outcome 

indicating cervical cancer presence (positive=1) or 

absence (negative=0). 

2.1 Data Preprocessing and Cleaning 

Transitioning from raw data to a modeling substrate 

involved multiple transformational stages. Each stage 

addressed specific quality concerns while preserving 

the underlying signal, essential for predictive insight. 

As illustrated in Figure 1, this comprehensive 

preprocessing workflow was the foundation for our 

analytical approach. 

 

Figure 1. Data Preprocessing Workflow 

Our initial encounter with the dataset revealed several 

quality challenges that required systematic remediation. 

The data presented inconsistent formatting, with 

numeric values encoded as strings, missing values 

represented by question marks rather than standardized 

null indicators, and specific columns exhibiting 

excessive missingness. The transformation pathway 

began with replacing question mark placeholders with 

appropriate NaN values, facilitating subsequent 

statistical analysis of missingness patterns. 

Analysis of the missing value distribution revealed two 

temporal variables—"STDs: Time since first diagnosis" 
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and "STDs: Time since last diagnosis"—with nullity 

exceeding 80%. Given this profound level of 

missingness, imputation would have introduced more 

statistical noise than signal; hence, these columns were 

removed from subsequent analyses. Following this 

initial triage, we confronted the data type inconsistency 

challenge. A comprehensive inspection revealed that 

numerically continuous variables were encoded as 

strings, necessitating conversion to appropriate numeric 

formats for algorithmic processing. 

Figure 2 shows that transformation yielded a dataset 

with 24 variables in float64 format and 10 in int64 

format, establishing the mathematical precision 

necessary for subsequent modeling steps. We then 

addressed the remaining missing values with 

harmonized data types through mean imputation. This 

strategy preserves the central tendency of each feature 

while providing complete data for the XGBoost 

algorithm. 

 

Figure 2. Data Type Conversion and Completion 

Following data cleaning, we conducted comprehensive 

exploratory analysis to uncover distributional 

characteristics and relationships within the feature 

space as shown in Figure 3. This investigative phase 

revealed critical patterns that informed subsequent 

modeling decisions while providing contextual 

understanding of the patient population represented in 

our dataset. 

 

Figure 3. Key Feature Distribution 

Descriptive statistics illuminated the demographic and 

behavioral profile of our cohort: a relatively young 

female population (mean age 26.82 years) with 

moderate reproductive history (average 2.28 

pregnancies) and limited tobacco exposure (14.6% 

smoking prevalence). Hormonal contraceptive usage 

emerged as the predominant birth control method 

(64.1%) compared to IUD utilization (11.2%). STD 

history was reported by 10.4% of patients, with HPV 

noted explicitly in only 0.3% of cases—a finding that 

underscores potential under-detection of this oncogenic 

virus in the study population. 

2.2 Model Development  

Following data preparation and exploratory analysis, 

we proceeded with feature engineering to optimize the 

input vector for XGBoost training. While our initial 

approach preserved all 33 available predictor variables 

to maximize information availability to the algorithm, 

we conducted sensitivity analyses to evaluate potential 

dimensionality reduction strategies. 

The feature set included demographic characteristics 

(Age), reproductive history (Number of pregnancies, 

First sexual intercourse), behavioral risk factors 

(Smoking status, years, and intensity), contraceptive 

methods (Hormonal contraceptives, IUD, and duration 

of use), detailed STD history (across multiple pathogen 

categories), and screening test results (Hinselmann, 

Schiller, Cytology). This comprehensive approach 

allowed the model to identify complex interaction 

patterns that might elude traditional statistical analyses. 

To enhance algorithm convergence and performance, 

we standardized all continuous features using the 

StandardScaler implementation from scikit-learn [27], 

[28]. This transformation normalized each feature to 

have zero mean and unit variance, preventing variables 

with larger magnitudes from dominating the gradient 

calculations during model training. The dataset was 

partitioned into training (80%), validation (10%), and 

testing (10%) subsets using stratified sampling to 

maintain class distribution across all partitions—a 

critical consideration given the pronounced class 

imbalance in the target variable. 

We implemented an XGBoost classifier with carefully 

tuned hyperparameters to balance predictive power 

against overfitting risk [29]. The extreme gradient 

boosting framework was selected for its established 

performance in medical prediction tasks with complex, 

heterogeneous feature sets [30], [31]. Hyperparameter 

optimization was conducted using a grid search 

approach paired with 5-fold cross-validation. This 

method systematically explored combinations of the 

following hyperparameters: Learning rate: [0.01, 0.1, 

0.2]; Maximum tree depth: [3, 5, 7]; Number of trees: 

[50, 100, 200]; Subsample ratio: [0.8, 0.9, 1.0]; 

Colsample_bytree: [0.8, 0.9, 1.0]. 

The grid search evaluated all possible combinations, 

selecting the configuration that maximized the area 

under the ROC curve (AUC) on the validation set. This 

ensured that the model was finely tuned to balance bias 

and variance effectively. 

As illustrated in Figure 4, the learning rate of 0.1 

provided a balanced approach to model fitting, allowing 

sufficient adaptability while avoiding excessive focus 
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on training sample idiosyncrasies. The maximum tree 

depth of 5 constrained individual decision tree 

complexity, promoting generalizability, while the 

ensemble of 10 trees provided sufficient model 

expressivity to capture the multifaceted relationships 

within the feature space 

 

Figure 4. XGBoost Model Architecture 

To provide a robust estimate of the model's 

performance, we employed 5-fold cross-validation on 

the training set. In this process, the data was split into 

five equal subsets, with the model trained on four 

subsets and tested on the remaining one in each 

iteration. This was repeated five times, and performance 

metrics—including accuracy, sensitivity, specificity, 

and AUC—were averaged across all folds. This cross-

validation approach minimized the risk of overfitting 

and provided a reliable assessment of the model's ability 

to perform on unseen data. 

To prevent overfitting during training, we implemented 

early stopping. The model's performance was 

monitored on the validation set after each boosting 

iteration, and training was terminated if the AUC failed 

to improve for 10 consecutive rounds. This technique 

ensured that the model retained its generalization ability 

without over-optimizing on the training data, while also 

reducing computational overhead. 

3. Results and Discussions 

The XGBoost classifier shows considerable promise in 

identifying cervical cancer risk patterns. Through 

iterative optimization, the algorithm achieved a testing 

accuracy of 96.28%, demonstrating a strong 

discriminatory ability. Although these aggregate 

metrics appear impressive at first glance, further 

examination revealed a complex interplay between 

statistical performance and clinical utility. 

The ROC curve analysis (see Figure 5) reveals an area 

under the curve (AUC) of 0.89, indicating strong 

discriminative capacity across different threshold 

settings. This metric is significant in rare disease 

prediction, where overall accuracy can obscure model 

performance on the minority class. The considerable 

distance between our model's curve and the random 

classifier baseline (diagonal line) suggests that the 

trained algorithm has successfully identified 

meaningful patterns within the feature landscape. 

Table 1 shows that the class-specific performance 

metrics reveal a striking asymmetry that warrants 

careful consideration. The model demonstrates near-

perfect precision (0.99) for identifying true negatives—

patients without cervical cancer—but struggles 

comparatively with positive case identification (0.55 

precision). This disparity emerges as a consequence of 

both the profound class imbalance in our dataset (only 

6.4% positive cases) and the inherent complexity of 

distinguishing pre-cancerous or early cancerous 

changes from normal variation based on demographic 

and behavioral features alone. 

 

Figure 5. ROC Curve – XGBoost Cervical Cancer Prediction 

Table 1. Performance Metrics of the XGBoost Cervical Cancer 

Prediction Model 

Metric Class 0  

(No Cancer) 

Class 1  

(Cancer) 

Weighted 

Average 

Precision 0.99 0.55 0.97 

Recall 0.98 0.67 0.96 

F1-score 0.98 0.60 0.96 

Support 206 9 215 

 

Figure 6. Confusion Matrix - XGBoost Cervical Cancer Prediction 

The confusion matrix (see Figure 6) offers a granular 

visualization of model predictions across the test 

cohort. Of particular clinical significance are the three 

false negatives—patients with cervical cancer who 

were incorrectly classified as healthy. These 

misclassifications represent the most concerning error 

type in the cancer screening context, potentially leading 
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to delayed intervention and poorer prognostic 

outcomes. At the same time, the five false positives, 

while less clinically alarming, still represent cases 

where patients might experience unnecessary anxiety 

and additional invasive testing. 

The observed sensitivity of 66.7% warrants contextual 

interpretation. While falling short of ideal screening 

parameters, this detection rate reflects the considerable 

challenge of predicting a complex disease state from a 

limited feature set. Our model demonstrates potential 

value as a supplementary risk stratification tool within 

comprehensive cervical cancer control programs. 

3.1 Feature Contribution Analysis  

Beyond aggregate performance metrics, the XGBoost 

algorithm's intrinsic interpretability mechanisms allow 

for a detailed examination of feature contributions to the 

prediction landscape. Figure 7 illustrates the relative 

importance of the features most significantly influenced 

model predictions. 

The feature importance analysis reveals that diagnostic 

tests and demographic/behavioral factors contribute 

substantially to risk assessment. Notably, the three 

screening methods—Schiller, Citology, and 

Hinselmann tests—emerged as the strongest predictors, 

collectively accounting for approximately 60% of the 

model's predictive power. Among the demographic and 

behavioral characteristics, age emerged as the fourth 

most influential feature, contributing approximately 

15% to the model's predictive capacity. The model 

appears to have captured this non-linear relationship, 

likely through the boosting algorithm's capacity to 

model complex interactions without explicit feature 

engineering. 

 

Figure 7. Confusion Matrix - XGBoost Cervical Cancer Prediction 

The substantial contribution of pregnancy history (13% 

importance) and hormonal contraceptive usage duration 

(11%) echoes findings from case-control studies 

suggesting complex relationships between reproductive 

factors and cervical carcinogenesis. Of particular 

etiological significance, HPV infection status 

contributed meaningfully to predictive accuracy (10% 

importance) despite the relatively limited prevalence in 

our cohort. This finding reinforces the central role of 

HPV in cervical carcinogenesis while suggesting that 

the model successfully identified patterns 

distinguishing transient from persistent high-risk 

infections based on covariate patterns. 

As shown in Figure 8, the precision-recall curve 

illuminates the critical trade-offs inherent in threshold 

selection for clinical implementation. Unlike the ROC 

curve, which weights false positive and negative errors 

equally, the precision-recall analysis offers insight into 

imbalanced classification contexts where positive case 

identification is highly significant. The baseline 

precision of 0.064 (corresponding to the prevalence of 

cervical cancer in our cohort) underscores the 

substantial improvement achieved by our model across 

all operating points. 

 

Figure 8. Feature Importance 

The curve reveals three clinically relevant threshold 

regimes: At a high threshold of 0.8, the model achieves 

remarkable precision (0.95) but identifies only 22% of 

cancer cases. Conversely, at a lower threshold of 0.2, 

sensitivity increases dramatically to 89%, but the 

positive predictive value declines substantially (0.20), 

resulting in numerous false positives. The default 

threshold of 0.5 represents a middle ground, with 

moderate sensitivity (67%) and precision (55%). 

This threshold analysis carries profound implications 

for potential clinical deployment. In high-resource 

settings with robust follow-up capabilities, a lower 

threshold might be preferable to maximize cancer 

detection, accepting the trade-off of increased false 

positives. Conversely, in resource-constrained 

environments, a higher threshold might better optimize 

limited diagnostic capacity by targeting patients at the 

highest risk, albeit at the cost of missed cases. The 

average precision score of 0.612—substantially 

exceeding the baseline prevalence—indicates 

meaningful predictive power across the operating 

range. 

3.2 Comparison of Feature Importance  

Upon examining the feature importance derived from 

our XGBoost model, we observed a notable alignment 

with the established epidemiological risk factors for 

cervical cancer. The model’s reliance on screening test 

results, such as the Schiller, Citology, and Hinselmann 

tests, as primary predictors is consistent with their 

clinical utility in detecting precancerous cervical 



 

Suryadi et al                                Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

 

                                                                                                                                                                               540 

 

changes. Additionally, demographic and behavioral 

factors, including age, number of pregnancies, and 

duration of hormonal contraceptive use, emerged as 

significant contributors to the model’s predictive 

power. These factors are well-documented in the 

literature as modifiers of cervical cancer risk. 

For instance, age is a recognized risk factor due to the 

natural history of HPV infection and cervical neoplasia 

progression [32], while multiple pregnancies and long-

term contraceptive use have been associated with 

increased risk through hormonal and immunological 

mechanisms [33]. However, it is noteworthy that HPV 

infection status, a paramount risk factor in cervical 

carcinogenesis [34], contributed less prominently to the 

model’s predictions than anticipated. 

This discrepancy may be attributed to the low reported 

prevalence of HPV in our dataset (0.3%), which likely 

limited the model’s ability to fully leverage this feature. 

Alternatively, the screening tests may indirectly capture 

HPV-related risk, thereby diminishing the explicit 

importance of HPV status in the model. Despite this, the 

overall concordance between the model’s feature 

importance and established risk factors reinforces the 

validity of our approach. Moreover, the identification of 

specific features, such as the duration of contraceptive 

use, as significant predictors offer potential avenues for 

further epidemiological investigation. 

4. Conclusions 

Our XGBoost model for cervical cancer risk prediction 

demonstrated discriminatory capacity, with accuracy 

reaching 96.3% with balanced performance metrics 

(sensitivity 66.7%, specificity 97.6%), despite 

significant challenges in predicting rare outcomes in 

unbalanced data sets. In practice, this trade-off between 

sensitivity and specificity positions the model as an 

enhancement to—not a substitute for—existing 

protocols. For doctors, it could streamline workflows by 

identifying patients who need urgent attention, 

particularly in areas with limited access to advanced 

diagnostics. For patients, it offers a personalized risk 

estimate, but its limitations (especially the risk of 

missed cases) mean they should stay vigilant and follow 

standard screening guidelines. 

Feature importance analysis revealed that although 

screening test results provided substantial predictive 

power, demographic and behavioral factors - including 

age, pregnancy history, contraceptive use, and STD 

history - made meaningful contributions to risk 

assessment. Precision-recall analysis suggested that our 

model may serve a valuable clinical function in risk 

stratification and screening optimization, especially in 

settings with limited comprehensive screening 

resources. 

Despite important limitations regarding sample size and 

external validation, our findings support further 

exploring machine-learning approaches to improve 

global cervical cancer control strategies. To address 

this, future work should focus on external validation 

using datasets from multiple hospitals or regions to 

evaluate the model’s robustness and generalizability. 

Potential approaches could include testing the model on 

independent, diverse datasets or employing a federated 

learning framework to integrate data from various 

sources while maintaining privacy. 
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