

544

Available online at website: https://jurnal.iaii.or.id/index.php/RESTI

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 3 (2025) 544 - 553 e-ISSN: 2580-0760

Automated Indonesian Plate Recognition: YOLOv8 Detection

and TensorFlow-CNN Character Classification

 Windu Gata1*, Dwiza Riana2, Muhammad Haris3, Maria Irmina Prasetiyowati4, Dika Putri Metalica5
1,2,3,5Computer Science, Faculty of Information Technology, Universitas Nusa Mandiri, Jakarta, Indonesia
4Informatics, Faculty of Engineering & Informatics, Universitas Multimedia Nusantara, Jakarta, Indonesia

1windu@nusamandiri.ac.id, 2dwiza@nusamandiri.ac.id, 3muhammad.uhs@nusamandiri.ac.id, 4maria@umn.ac.id,
5dika.putri93@gmail.com

Abstract

The precise identification and reading of Indonesian vehicle number plates are important in many areas, including the

enforcement of law, collection of charges, management of parking areas, and safety measures. This study integrates the

implementation of the YOLOv8 object detection algorithm with three OCR methods: EasyOCR, TesseractOCR, and

TensorFlow. YOLOv8 is capable of identifying license plates from images and videos at a high speed and reliability under

different conditions and therefore is used in this study to perform plate detection in images and videos. After licenses are

detected, OCR techniques are performed to segment and read the letters. Both EasyOCR and TesseractOCR performed

moderately well on static images achieving accuracy rates of 70% and 68% respectively, but both suffered significantly lower

performance in video scenarios. Of the 100 video frames, EasyOCR was able to correctly identify characters in 61 frames and

TesseractOCR in 58 frames, while the TensorFlow-based model outperformed the other two with 75 correct recognitions.

Furthermore, easy OCR and static images as input while the TensorFlow-based models completed them with 100% accuracy.

This observation can be explained by its design, which utilizes a CNN with ReLU activation and Softmax outputs, trained on

10,261 annotated characters and was enhanced with five different data augmentation techniques. The model shows strong

performance in its ability to handle dynamic conditions such as motion blur, changing light conditions, and rotation of the

plate angle. The results underscore the drawbacks of one-size-fits-all OCR applications in real-world use cases and stress the

need for bespoke model training, as well as hierarchical contouring, in the context of automatic license plate recognition

(ALPR). This study provides additional insights into ALPR systems by delivering a robust, scalable, and real-time tool for plate

and character recognition, which is essential for intelligent transportation systems.

Keywords: YOLO; TensorFlow; optical character recognition (OCR); indonesian license plate detection; deep learning

How to Cite: Wndu Gata, Dwiza Riana, Muhammad Haris, Maria Irmina Prasetiyowati, and Dika Putri Metalica, “Automated Indonesian Plate

Recognition: YOLOv8 Detection and TensorFlow-CNN Character Classification”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 9, no. 3, pp.

544 - 553, Jun. 2025.

Permalink/DOI: https://doi.org/10.29207/resti.v9i3.6310

Received: January 16, 2025

Accepted: June 4, 2025

Available Online: June 15, 2025

This is an open-access article under the CC BY 4.0 License
Published by Ikatan Ahli Informatika Indonesia

1. Introduction

Effective recognition of Indonesian vehicle registration

plates is essential for the enforcement of regulations and

for ensuring public safety. The rigorous monitoring of

violation offenses such as over-speeding, illegal

parking, or driving into restricted areas presents

growing difficulties, which can be addressed with the

ALPR (Automatic License Plate Recognition) system

due to its scalable capabilities. These systems enhance

automated detection of offenders, minimizing the need

for manual processes and increasing efficiency in

enforcement operations. Furthermore, the detection of

vehicle registration plates also serves the purpose of toll

fee collection, parking management, and security

surveillance where immediate identification of vehicles

is required.

The classical methods of image processing continue to

be useful in ALPR systems because of their

straightforwardness and flexibility. One research

employed morphological techniques followed by KNN

to solve recognition issues for Indian plates due to their

unconventional shapes [1]. The combination of

Gaussian noise removal along with contour-based

segmentation contributed towards reliable detection of

plates in vehicles [2]. Another work applied contouring

and edge detection to address problems with

https://doi.org/10.29207/resti.v9i3.6310
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 545

illumination differences [3]. Pipelines designed for

plate recognition and traffic management have been

implemented using OpenCV, proving adaptability for

real-life traffic situations [4]. Morphological methods

have been applied to achieve high accuracy for

Indonesia's plate recognition [5]. Stroke width

transform and neural networks were applied to number

plate detection and classification. Morphological

preprocessing helped in the recognition of candidate

plates [6]. Plate recognition together with character

segmentation was enhanced using a combination of

histogram equalization and Sobel edge detection [7].

The You Only Look Once (YOLO) algorithm for object

detection has found application in License Plate

Recognition (LPR) systems due to its efficiency and

precision. In a comparison study on the versions of

YOLO (v5, v7, v8, v9), it was reported that YOLOv8

outperformed all others in precision and recall,

especially under varying lighting conditions [8]. Other

researches also show that the integration of YOLO with

EasyOCR achieved 94% accuracy for parking system

plate recognition [9]. Moreover, YOLOv8 was also

incorporated into the SAMBARA system aimed at

automating the tax verification and counterfeit plate

detection processes in Indonesia [10]. As for other

applications of YOLO, one study combined YOLO

with ResNet to improve parking management systems

[11]. YOLOv5 also found use in traffic monitoring and

parking systems with remarkable accuracy in detection

[12]. A combination of EasyOCR, Tesseract OCR, and

YOLOv5 enabled a recognition accuracy of 95% [13].

YOLOv8 customized for Iranian motorcycle plates

achieved 99% detection accuracy [14]. Further

enhancements to YOLOv5 with GRU for character

recognition increased the accuracy to 98.98% [15].

Advanced versions of YOLOv5 developed for Indian

plates detected them with 99.1% accuracy [16]. Another

system incorporated YOLOv5 into Secure Park, a real-

time intrusion detection system designed with the

Microsoft Vision API and OCR [17]. Real-time

detection optimization for urban traffic environments

were addressed, including background noise, and

obstacles covering the plates were tackled [18].

Extensive work has been done towards Indonesian LPR

systems, one example being a 94% accurate detection

using a YOLOv8 and EasyOCR-based system, proving

resilience in identifying non-conventional plates under

difficult circumstances [19].

The ease of performing license plate recognition (LPR)

operations has significantly improved with the

introduction of convolutional neural networks (CNNs),

primarily because these systems are now capable of

overcoming substantial environmental noise. Robust

Recognition OCR technology incorporated CNNs to

enhance recognition accuracy during variable

conditions [20]. Recognition of blurred license plates

within Indonesia was enhanced through the use of

multi-scale CNN models [21]. Character recognition for

noisy data was improved with the use of sliding

windows and CNNs [22]. The ability of CNNs to handle

noise was illustrated through his robust recognition of

Indonesian plates with obstructions [23]. Neural

processing has shown versatility to different plate

shapes and angles which would allow for diverse

conditions of implementation [24]. Further refinements

to segmentation techniques CNNs provided enhanced

precision in noisy environments[22].

ALPR systems are getting more traffic fines and

infractions enforcement violations using ALPR

Automated license plate recognition systems integrated

with traffic safety systems. One implementation that

issued graduated penalties for road behavior OCR based

recognition of helmet riding showed restriction

improved road safety. License and insurance

verification enforcement automation has also been

proposed as non-compliance augmented issuing

penalties OCR zero regard pay [25]. The systems

developed in these studies have proven the

effectiveness of LPR in advancing the goal of

automating the enforcement of traffic laws. Comparison

studies have been very productive in understanding the

diverse advantages and disadvantages of different LPR

systems. Work on Indian plates is documented in the

form of review focusing on traditional and YOLO

approaches [26]. There are also comparisons of YOLO

and traditional edge detection that demonstrate the

importance of deep learning to surveillance systems

[27].

Existing works show that OCRs like EasyOCR and

TesseractOCR make use of YOLO framework for

license plate detection. Thus, this study has two

objectives: first, to implement the YOLO algorithm for

vehicle license plate detection in images and videos,

and second, to evaluate OCRs EasyOCR, TesserOCR

and those implemented with TensorFlow. Moreover,

this study analyzes the dynamic video footage of the

license plates to test algorithms for character

recognition in real-time scenarios. For each image of

the license plate, three main parts are defined: the

regional code (letters) as the first segment, the plate

number (digits) as the second segment, and sub-

regional code (letters) as the third segment. This

research intends to devise methods of recognizing

license plate characters, particularly from video data, so

as to analyze the effectiveness of OCRs and the

segmentation comparison with the models from

TensorFlow.

Most of the existing YOLO-OCR implementations

target the US, Europe and India which have different

standards from Indonesia and are thus, poorly adapted

to the Indonesian format. These models are not

equipped to deal with the alphanumeric strings, fonts,

spacing, and region code variations that are unique to

Indonesian plates.

This study focuses on these limitations by utilizing a

segmented method based on Indonesia's tectonic plate

configuration, in conjunction with a TensorFlow model.

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 546

2. Methods

This study involved several steps in relation to the

objectives of license plate recognition and character

recognition. The first step uses the YOLO algorithm to

detect license plates because of its speed and accuracy

in locating plates within images or video frames. After

detection, the next step is to segment the detected plate

into three parts: the regional code of the plate's letters,

the numeric portion of the plate as digits, and the sub-

regional code which are also letters.

Character recognition involves comparative analysis

using three approaches: EasyOCR, TesseractOCR and

one based on TensorFlow. These approaches will be

tested for their ability to recognize characters in still and

video images. To assess the robustness of the system,

video analysis is conducted in real time, simulating

actual working conditions that test the algorithms under

varying light, angle, and environmental changes. Each

OCR method's results are benchmarked against one

another on accuracy, processing time, and

dependability, with the ultimate goal being the

identification of the most suitable method for the

recognition of dynamically changing conditions. This is

illustrated in Figure 1.

Figure 1. Comparative Model Plat Number Research Process

2.1 License Plate Detection with YOLOv8

The specifications of the device detail its parts and

components, highlighting a 12th Gen Intel(R) Core

(TM) i7-12700 2.10 GHz processor, 32.0 GB of RAM

with 31.8 GB usable, and an NVIDIA GeForce RTX

3060 Ti GPU. The sistem is configured with Windows

11 Operating System and uses Python version 3.9.2

alongside YOLOv8 for object detection, Tesseract

0.3.13 for OCR, and EasyOCR 1.7.1 for advanced text

recognition.

The initial dataset consists of 861 images, with each

image annotated with bounding boxes to mark license

plates. This annotation process is conducted using tools

like YOLO and LabelIMG to ensure accurate

localization of license plates. The model handler uses

YOLO (You Only Look Once) to either initialize a new

model or load an existing one. If the specified model

file ends with ̀ .yaml`, it initializes a new YOLO model;

if it ends with `.pt`, it loads a pre-trained model.

This optimization process is expressed as shown in

Equation 1:

𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜃 ∑ 𝐿(𝑀𝜃(𝑥𝑖), 𝑦𝑖)
𝐸
𝑖=1 (1)

Where 𝑥𝑖 represents the input images, 𝑦𝑖 represents the

corresponding labels, 𝑀𝜃 is the model parameterized by

𝜃, and 𝐿 is the loss function. This equation describes the

process of finding the optimal model parameters 𝜃𝑜𝑝𝑡

by minimizing the cumulative loss over a dataset of ∑

examples.

The model evaluation on a validation dataset V is given

by Equation 2.

P = Mpretrained (V) (2)

where P represents the performance metrics, and

Mpretrained is the pre-trained model applied to the

validation dataset V. This step computes metrics to

assess the model’s accuracy and effectiveness.

The prediction process for new input images I is

expressed as Equation 3.

ŷ = Mpretrained (I) (3)

where ŷ represents the bounding box predictions for

license plate localization, and Mpretrained is the pre-

trained model applied to the input images I.

2.2 Segmentation

For a clearer understanding of the segmentation of

Indonesian license plates, refer to Figure 2. In this

illustration, Segment 1 represents the regional code,

such as the letter "B," Segment 2 represents the numeric

identifier, such as "6401," and Segment 3 represents the

sub-regional code, such as "VRL". This research

focuses solely on license plates and does not extend to

tax-related aspects, as indicated by the numbers

"08.2028" displayed on the plate.

Figure 2. Sample Segmentation Indonesian Plate Number

The process involves license plates successfully

detected by YOLO with a confidence percentage of

50% being standardized to a pixel size of 400 x 200 and

divided into three segments. Segment 1 covers the pixel

range [10:128, 10:60], Segment 2 covers [10:128,

60:238], and Segment 3 covers [10:128, 238:400].

2.3 OCR

OCR is a technology that converts physical text into

digital data. In addition to its use in finance, healthcare,

and education, OCR supports traffic management by

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 547

reading vehicle license plates and detecting violations.

This technology enhances efficiency and accessibility,

and drives digital transformation across various fields.

EasyOCR and Tesseract were selected due to their

widespread adoption and open-source availability.

TensorFlow was chosen to explore a custom-trained

deep learning approach. Other advanced frameworks

such as PaddleOCR or Vision Transformers were not

included due to complexity in model customization and

training requirements outside the study's scope.

2.3.1 EasyOCR

EasyOCR is a powerful OCR tool developed by Jaided

AI. Supporting over 80 languages, it’s built with

PyTorch for efficient text extraction from images,

scanned documents, or handwriting. EasyOCR is ideal

for tasks like reading license plates, processing

invoices, and automating text extraction across

industries.

Figure 3. EasyOCR Framework

The EasyOCR framework Figure 3 is composed of

several important processes for Optical Character

Recognition. It starts with pre-process, which enables

the corresponding image to be input for the text to be

detected. The CRAFT Character Region Awareness For

Text detection model recognizes the regions that

contain text, then moves to Mid-Process stage to refine

these regions. Text recognition is done using the

Residual Network (ResNet), Long Short-Term Memory

(LSTM), and Connectionist Temporal Classification

(CTC) pipeline along with other recognition models.

Patterns are converted into text and the decoding is done

using greedy decoders or other decoders which translate

recognized patterns into text.

Events defined above are all finalizing processes which

can be done after text is recognized and a final output is

required. These outputs can be refined further which

leads to better uses of OCR systems. The accuracy of

machine-read text is enhanced with the addition of a

Data Generator and a Training Pipeline under the

EasyOCR framework.

2.3.2 TesseractOCR

Tesseract OCR is an Optical Character Recognition

system, which is one of the systems available free of

charge on the internet. It was first offered by the firm

Hewlett-Packard and was later enhanced by Google.

The program captures hand-written documents or

printed texts found in images and documents

transforming them into texts which can be edited

electronically. Tesseract offers flexibility,

conceptualized document scanning, automated text

processing and customization which in return benefits a

wide range of use.

Figure 4. The process of Tesseract OCR

In Figure 4, the Tesseract OCR process begins with an

input image sent via API request. The image undergoes

preprocessing using Leptonica for quality

enhancement. The Tesseract engine, supported by

trained data sets, extracts text from the processed image.

Post-processing then refines the output, delivering

accurate text as the final API response.

2.3.3 Character Detection using YOLO and

TensorFlow

Character Detection on License Plates: The next phase

involved identifying the individual characters on the

license plate. At this stage, a secondary instance of

YOLO was employed, specifically for isolating

characters within the plate’s boundaries. Each

alphanumeric character, whether a letter or a digit, was

enclosed in its own bounding box, ensuring that each

character was distinctly separated from the others.

Character Recognition with TensorFlow: In the final

stage, the system focused on recognizing each of the

detected characters and classifying them as the correct

letter or number, see Figure 5.

In this research, a dataset of 10,261 annotated characters

from Indonesian license plates was manually collected

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 548

from images and videos. The data was taken from

various regions in Indonesia to ensure diversity in plate

formats, you can see the datasets on this dataset.

Labeling was performed manually using LabelImg,

with separate bounding boxes for each character.

Figure 5. The Process of TensorFlow

This process could be summarized through a single

formula-like expression that outlined the series of

transformations the input image underwent as it passed

through the layers of the CNN.

The CNN model started with an input layer that

represented the image with a height and width of 64

pixels and 3 colour channels (RGB).

This could be expressed mathematically as shown in

Equation 4:

X ∈ R⁶⁴×⁶⁴×³ (4)

This convolution produced an output with dimensions

of 62×62 and 32 channels, as the image size slightly

decreased due to the application of filters without

padding. Subsequently, the bias b1 was added to the

convolution result, and the ReLU activation function

was applied. The ReLU function transformed all

negative values to zero, introducing non-linearity to the

output, referred to as H1. The final output H1 had

dimensions of 62×62×32, where 32 represented the

number of output channels, capturing basic features

detected from the input image. This process was

expressed in Equation 5:

H₁ = ReLU(X * W₁ + b₁), H₁ ∈ R⁶²×⁶²×³² (5)

The first max-pooling layer applied 2×2 pooling,

reducing the spatial dimensions of the output while

retaining the 32 channels from the previous layer. This

operation was expressed in Equation 6:

H₂ = MaxPool(H₁), H2 ∈ R⁶⁴×⁶⁴×³² (6)

The second convolutional layer applied 64 filters of size

3×3 with ReLU activation, generating feature maps.

This was followed by a second max-pooling layer that

used 2×2 pooling, further reducing the spatial

dimensions. The operations for this layer were

expressed mathematically in Equation 7:

H₃ = ReLU(H₂ * W₂ + b₂), H₃ ∈ R²⁹×²⁹×⁶⁴ (7)

This resulted in an output with dimensions of

14×14×64, where 14×14 was the reduced spatial size,

and 64 was the number of channels, consistent with H3.

This operation was expressed as shown in Equation 8:

H₄ = MaxPool(H₃), H₄ ∈ R¹⁴×¹⁴×⁶⁴) (8)

In the third convolutional layer, the output tensor had

dimensions of 12×12×128, where 12×12 represented

the spatial dimensions after applying the convolution,

and 128 was the number of output channels

corresponding to the filters. This operation was

expressed in Equation 9:

𝐻5 = 𝑅𝑒𝐿𝑈(𝐻4 ∗ 𝑊3 + 𝑏3), 𝑤ℎ𝑒𝑟𝑒 𝐻5 ∈
𝑅12 ×12×128 (9)

In the next step, the output dimensions were reduced to

6×6×128. The spatial dimensions (6×6) resulted from

the pooling operation, which shrank the width and

height of H5 from 12×12 to 6×6. The depth (128

channels) remained unchanged, preserving the feature

complexity learned in the previous layer. This operation

was expressed in Equation 10:

H₆ = MaxPool(H₅), where H₆ ∈ R⁶×⁶×¹²⁸ (10)

Convert the 3D tensor H6 into a 1D vector with a size of

4608, preparing it for input into the fully connected

layers. This transformation is expressed in Equation 11:

f = Flatten(H₆), where f ∈ R⁴⁶⁰⁸ (11)

W4: The weight matrix for this dense layer, consisting

of weights that the model learned to connect each input

feature in f to each of the 128 units.

b4: The bias term for the dense layer, which adjusted

the output before the activation function was applied.

⋅: Represented matrix multiplication between f and W4.

The operation of this dense layer was described by

Equation 12:

h₇ = ReLU(f ⋅ W₄ + b₄), h₇ ∈ R¹²⁸ (12)

Finally, the output layer consisted of a dense layer with

10 units for numbers and 36 units for characters,

represented as nnn. A softmax activation function was

applied to produce probabilities for each class. This

operation was described in Equation 13:

y = Softmax(h₇ ⋅ W₅ + b₅), y ∈ Rn (13)

The test set was held out and never used during training

or validation, ensuring a fair evaluation. This division

was applied to address specific challenges that arose

when identifying and classifying characters, especially

when dealing with problematic or ambiguous symbols

such as (~).

The ImageDataGenerator was employed to enhance the

training data by augmenting images through

transformations that helped the model generalize better.

https://zenodo.org/records/15595347/files/dataset.zip

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 549

By rotating, shifting, and zooming the images, the

generator simulated real-world variations that were

particularly beneficial for dealing with the diversity of

characters and numbers in different situations. The

robustness of the dataset was achieved through

transformations, such as horizontal and vertical shifts

and slight image shearing. Gaps arising from these

transformations were filled using nearest-neighbor

filling, which maintained uniformity, allowing for the

effective augmentation of image information without

loss. This configuration enhances model dependability,

particularly in the context of unseen data, improving the

accuracy in diverse character recognition scenarios.

Table 1. Training and Validation Results of CNN + Softmax over 10

Epochs for Character Recognition

Epoch Loss Accuracy Val_Loss Val_Accuracy

1 0.2548 0.9279 0.1887 0.9641

2 0.0581 0.9838 0.2252 0.9575

3 0.0345 0.9906 0.2768 0.9608

4 0.0244 0.9933 0.3044 0.9700

5 0.0220 0.9944 0.3559 0.9711

6 0.0160 0.9959 0.2714 0.9758

7 0.0160 0.9960 0.3324 0.9707

8 0.0129 0.9967 0.2765 0.9729

9 0.0105 0.9972 0.2940 0.9667

10 0.0116 0.9973 0.3625 0.9676

Table 1 represented the CNN model in this study which

was trained over 10 epochs using a license plate

character dataset, which was divided into digits (0–9)

and letters (A–Z). The dataset was split into 90% for

training and 10% for testing. To enhance model

generalization, five types of image augmentation

techniques were applied to the training set.

3. Results and Discussions

3.1 License Plate Detection with YOLOv8

As shown in Figure 6, based on the provided F1-

Confidence Curve and detection results, the model

demonstrated high performance in license plate

recognition. The F1-Confidence Curve indicated that

the model achieved a peak F1 score close to 1.0, with

the F1 score for all classes reaching approximately 0.99

at a confidence threshold of 0.547.

This result reflected a strong balance between precision

and recall, showing the model’s ability to accurately

detect license plates under various conditions.

Figure 7 displayed multiple images of detected license

plates, each highlighted with a blue bounding box

labeled "license," indicating successful detection. The

model was able to effectively identify plates across

various angles, lighting conditions, and vehicle types,

demonstrating its robustness in real-world settings.

Figure 6. F1- Score - Identification Plate from Figure

Figure 7. Sample Plate from Frame

3.2 EasyOCR

EasyOCR was utilized to recognize each character for

sections 1, 2, and 3. With static or non-moving data,

EasyOCR accurately recognized 602 out of 861 license

plates, which was a success rate of 70%. However, for

dynamic data, like video footage, EasyOCR had

difficulty with accuracy in character-by-character

recognition.

This issue was caused by movement within the images

resulting in blurriness and lack of sharpness, which

severely hindered recognition accuracy. This

demonstrated that the effectiveness of OCR, especially

with background motion or fluctuating light conditions,

heavily relied on the quality of input data. The result

could be observed in this video.

3.3 TesseractOCR

As with segments 1, 2, and 3, Tesseract OCR was used

for character recognition. For static data, Tesseract

OCR recognized 585 license plates out of 861 with an

accuracy of 68%. However, when tested with dynamic

https://zenodo.org/records/15595347/files/Easyocr.mp4?download=1

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 550

data (video data), performance dropped significantly,

just like with EasyOCR, due to blurriness and loss of

detail from motion smoothing.

This showed that both Tesseract OCR and EasyOCR

were greatly influenced by the quality of data provided,

particularly in situations where there was movement or

visual instability, which adversely impacted precision

and effectiveness. The results could be viewed in this

video.

3.4 Character Detection within Plates using YOLO

From character-level detection results on plates, it could

be noticed from the F1-Confidence Curve (Figure 8)

that the model was able to detect all characters on the

plate with a total of 10,261 characters. Furthermore, the

curve demonstrated an F1 score of a rather high 0.97 for

all classes at a 0.527 confidence threshold. This showed

that at this threshold, the model captured an excellent

blend of precision and recall, which resulted in high

accuracy of character detection. The F1 score remained

high with increasing confidence levels, up until a sharp

drop, suggesting that while the model accurately

detected characters within certain parameters, it

struggled beyond those parameters. Altogether, the

graph indicated model robustness in terms of precision

and recall when detecting specific characters for license

plates.

Figure 8. F1 Score for Detection Characters on the Plate

Figure 9. Sample Characters Detection on the Plate

Sample images of characters detected on license plates

were shown in Figure 9. All characters embedded

within the license plates were enclosed within bounding

boxes marked as "contain," signaling that each

alphanumeric element had been precisely detected and

successfully segmented. The various license plates

captured at different angles and under different light

conditions were reliably processed with all characters

identified and separated.

This showcased the model's strong capabilities in

detailed character-level recognition, which was

important for accurate recognition of license plates. The

uniform bounding illustrated that the model could

differentiate discrete characters, permitting meta-

analysis character-by-character, which was critical for

vehicle identification and automated plate recognition

in real-life applications.

TensorFlow assisted in detecting entire static license

plates in a given image. In dynamic scenarios, this

algorithm was capable of number detection with YOLO

performing character detection, and it worked

remarkably well even under difficult conditions.

https://zenodo.org/records/15595347/files/Tesseract.mp4?download=1

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 551

As shown in Figure 10, one of the frames from the

implementation video demonstrated how the model

tracked and recognized license plates on motorcycles

within a moving stream of traffic. License plate

detection occurred on two motorcycles as bounding

boxes encapsulating the numbers were drawn and every

character was labeled in green. This frame showcased

the capabilities of the model to track and recognize

letters in a complex background containing a lot of

motion, dynamic perspectives, and elements of nature.

The precision and segmentation in such a complex

environment demonstrated the model’s versatility and

accuracy for real-time traffic video analysis.

Figure 10. Frames of Implementation Video on the Street

In Figure 11, several samples of detected license plates

are shown, where each plate is segmented and each

character is enclosed within a green bounding box. The

model successfully detects and isolates individual

characters on various plates, displaying a clear and

consistent identification of letters and numbers.

This sample set demonstrated the model's capability to

handle different plate formats and orientations,

accurately recognizing characters despite variations in

font, spacing, and slight image distortions. The

precision of the bounding boxes around each character

indicated the model’s robustness in distinguishing

characters, which was essential for applications

requiring detailed analysis, such as automated license

plate recognition in traffic systems. For detailed

analysis on this video.

Figure 11. Sample Detect Plate Number

3.5 Evaluation

The comparative study on EasyOCR, TesseractOCR,

and TensorFlow in conjunction with YOLO for license

plate recognition offered important observations

regarding OCR efficacy in different contexts. While the

three approaches had identical F1 scores of 0.97 for the

YOLO-based facility of license plate detection,

character recognition performed quite differently. This

underscored that OCR systems should not solely be

evaluated on detection performance but also on the

fidelity of recognition in both static and dynamic

contexts.

Table 2. Evaluation Using Static Figure and Video

OCR Method Algorithm

Dataset

Character

&

Accuracy

Image

Video

Per 100

Frames

EasyOCR ResNet,

LSTM,

CTC

- 70% 61%

TesseractOCR Tesseract

Engine

(Hewlett

Packard +

Google)

- 68% 58%

TensorFlow CNN +

Relu +

SoftMax

10.261

10 Epoch

Accuracy

99.7%

100% 75%

In Table 2, a comparison was made between three OCR

systems with respect to character recognition in license

plates from still and animated images (videos). In the

case of still images, EasyOCR scored 70%.

TesseractOCR scored slightly lower at 68%.

TensorFlow scored 100%, supported by a training

dataset for 10 epochs which gave a training accuracy of

99.7%. In video data (based on 100 test frames),

EasyOCR recognized characters in 61 frames,

TesseractOCR in 58 frames, and TensorFlow in 75

frames.

These results demonstrated that while EasyOCR and

TesseractOCR performed well with static images, their

performance dropped substantially in dynamic video—

likely due to motion blur and changes in lighting and

frame stability. On the other hand, TensorFlow

demonstrated stronger robustness and generalization,

maintaining high accuracy even in real-world video

environments. This made TensorFlow the most

effective OCR method among the three for

implementing automated license plate recognition

systems, particularly in dynamic, real-time footage.

Failure cases were observed primarily in video frames

with heavy motion blur or partial occlusion. EasyOCR

and Tesseract frequently misclassified characters with

similar shape. YOLO occasionally missed plates at

extreme angles. These findings indicated the need for

enhanced pre-processing and real-time frame

stabilization in future deployments.

While TensorFlow demonstrated the highest accuracy,

a statistical t-test was not conducted to verify the

significance of performance differences. This will be

explored in future work to confirm reliability across

various scenarios.

3.6 Processing Time Comparison

https://zenodo.org/records/15595347/files/CNN.mp4?download=1

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 552

The average time required to process a single static

image was approximately 0.14 seconds for EasyOCR,

0.22 seconds for Tesseract, and 0.27 seconds for

TensorFlow. For video data (per frame), TensorFlow

required the longest due to sequential character

segmentation, averaging 0.35 seconds per frame.

4. Conclusions

This study investigated the detection and recognition of

Indonesian license plates by integrating YOLO for

object detection and three OCR methods: EasyOCR,

TesseractOCR, and TensorFlow for character

recognition. YOLOv8 demonstrated strong detection

capabilities across both static images and video data,

effectively localized license plates under real-world

conditions.

In the character recognition phase, each OCR method

showed varying levels of performance. EasyOCR and

TesseractOCR achieved moderate accuracies of 70

percent and 68 percent on static images. However, their

performance significantly dropped when applied to

dynamic video frames, with accuracy decreased to 61

percent and 58 percent out of 100 frames respectively.

On the other hand, the TensorFlow-based CNN model

achieved 100 percent accuracy on static images and 75

percent accuracy on dynamic video.

These results indicated that the TensorFlow model,

supported by CNN architecture with ReLU and

Softmax layers, was more reliable and adaptable than

traditional OCR engines. The study also highlighted the

importance of structured plate segmentation and a well-

prepared dataset in improving OCR accuracy.

Beyond selecting the best-performing OCR, future

work would explore hybrid approaches combining rule-

based filtering with deep learning, adaptive

segmentation for plates with variable layouts, and the

integration of transformer-based OCR models for

enhanced contextual understanding and this system

could be extended to support multi-object tracking,

behaviour analysis, and improved performance in

challenging conditions such as low light, occlusions, or

adverse weather.

While the TensorFlow model achieved exceptional

performance on static images (100% accuracy), the

diverging trend between training and validation loss

during model training, along with the significant

performance drop in video scenarios (75%), suggested

potential mild overfitting. The 3% gap between final

training accuracy (99.73%) and validation accuracy

(96.76%) indicated the model might have partially

memorized training patterns. However, the reasonable

video performance suggested the model had learned

generalizable features. The overfitting appeared

manageable but needed to be addressed in future work

through better regularization and validation strategies.

Future implementations should have incorporated early

stopping mechanisms, cross-validation techniques, and

enhanced regularization methods to improve model

generalization and ensure more robust performance

across diverse real-world conditions.

References

[1] P. R. K. Varma, S. Ganta, B. K. H., and P. Svsrk, “A novel

method for Indian vehicle registration number plate detection

and recognition using image processing techniques,”

Procedia Computer Science, vol. 167, pp. 2623–2633, 2020,

doi: 10.1016/j.procs.2020.03.324.

[2] K. Anusha, S. Nachiyappan, M. Braveen, K. V. Pradeep, and

S. R. Yarlagadda, “A simple number plate detection technique

with support vector machine for on-road vehicles,” in 2022

International Virtual Conference on Power Engineering

Computing and Control (PECCON), Chennai, India, May

2022, pp. 1–6. doi: 10.1109/PECCON55017.2022.9851000.

[3] R. Boliwala and M. Pawar, “Automatic number plate

detection for varying illumination conditions,” in 2016

International Conference on Communication and Signal

Processing (ICCSP), Melmaruvathur, India, Apr. 2016, pp.

658–661. doi: 10.1109/ICCSP.2016.7754224.

[4] R. R. Chandrika and others, “Number plate recognition using

OpenCV,” in 2024 International Conference on Emerging

Smart Computing and Informatics (ESCI), Pune, India, Mar.

2024, pp. 1–4. doi: 10.1109/ESCI59607.2024.10497253.

[5] Y. P. Pasrun, M. Muchtar, A. N. Basyarah, and Noorhasanah,

“Indonesian license plate detection using morphological

operation,” IOP Conference Series: Materials Science and

Engineering, vol. 797, no. 1, p. 012037, Mar. 2020, doi:

10.1088/1757-899X/797/1/012037.

[6] I. M. Gorovyi and I. O. Smirnov, “Robust number plate

detector based on stroke width transform and neural

network,” in 2015 Signal Processing Symposium (SPSympo),

Debe, Poland, Jun. 2015, pp. 1–4. doi:

10.1109/SPS.2015.7168289.

[7] G. Kothai, E. Povammal, A. S., and D. V., “An efficient deep

learning approach for automatic license plate detection with

novel feature extraction,” Procedia Computer Science, vol.

235, pp. 2822–2832, 2024, doi: 10.1016/j.procs.2024.04.267.

[8] A. C. Bukola, P. A. Owolawi, C. Du, and E. Van Wyk, “A

systematic review and comparative analysis approach to

boom gate access using plate number recognition,”

Computers, vol. 13, no. 11, p. 286, Nov. 2024, doi:

10.3390/computers13110286.

[9] N. Supriya and others, “An efficient license plate recognition

model through deep learning integration with YOLO and

OCR techniques,” in 2024 International Conference on

Advances in Modern Age Technologies for Health and

Engineering Sciences (AMATHE), Shivamogga, India, May

2024, pp. 1–5. doi:

10.1109/AMATHE61652.2024.10582121.

[10] A. U. Nawawi and others, “Automatic license plate

recognition: Automated tax verification for registered

vehicles via SAMBARA server,” in 2024 10th International

Conference on Wireless and Telematics (ICWT), Batam,

Indonesia, Jul. 2024, pp. 1–5. doi:

10.1109/ICWT62080.2024.10674718.

[11] J. Joshua, J. Hendryli, and D. E. Herwindiati, “Automatic

license plate recognition for parking system using

convolutional neural networks,” in 2020 International

Conference on Information Management and Technology

(ICIMTech), Bandung, Indonesia, Aug. 2020, pp. 71–74. doi:

10.1109/ICIMTech50083.2020.9211173.

[12] I. Varalakshmi, M. K. Santhoshi, and S. Swetha, “Automatic

number plate recognition system using deep learning

YOLOv5 algorithm,” in 2023 International Conference on

System, Computation, Automation and Networking

(ICSCAN), Puducherry, India, Nov. 2023, pp. 1–6. doi:

10.1109/ICSCAN58655.2023.10395604.

[13] D. R. Vedhaviyassh and others, “Comparative analysis of

EasyOCR and TesseractOCR for automatic license plate

recognition using deep learning algorithm,” in 2022 6th

International Conference on Electronics, Communication

and Aerospace Technology (ICECA), Coimbatore, India, Dec.

 Windu Gata et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 553

2022, pp. 966–971. doi:

10.1109/ICECA55336.2022.10009215.

[14] A. Fathi, B. Moradi, I. Zarei, and A. Shirbandi, “Deep

learning-based system for automatic motorcycle license

plates detection and recognition,” Signal, Image and Video

Processing, vol. 18, no. 12, pp. 8869–8879, Dec. 2024, doi:

10.1007/s11760-024-03514-5.

[15] H. Shi and D. Zhao, “License plate recognition system based

on improved YOLOv5 and GRU,” IEEE Access, vol. 11, pp.

10429–10439, 2023, doi: 10.1109/ACCESS.2023.3240439.

[16] A. Kathirvel and others, “Systematic number plate detection

using improved YOLOv5 detector,” in 2023 2nd

International Conference on Vision Towards Emerging

Trends in Communication and Networking Technologies

(ViTECoN), Vellore, India, May 2023, pp. 1–6. doi:

10.1109/ViTECoN58111.2023.10157727.

[17] D. U. Nayak and others, “SecurePark: Vehicle intrusion

detection system,” in 2021 Asian Conference on Innovation

in Technology (ASIANCON), Pune, India, Aug. 2021, pp. 1–

6. doi: 10.1109/ASIANCON51346.2021.9544923.

[18] X. Li, “Real-time license plate number detection based on

image contour,” Journal of Physics: Conference Series, vol.

1650, no. 3, p. 032073, Oct. 2020, doi: 10.1088/1742-

6596/1650/3/032073.

[19] A. D. Iriawan and A. Sunyoto, “Automatic license plate

recognition system in Indonesia using YOLOv8 and

EasyOCR algorithm,” in 2023 6th International Conference

on Information and Communications Technology (ICOIACT),

Yogyakarta, Indonesia, Nov. 2023, pp. 384–388. doi:

10.1109/ICOIACT59844.2023.10455908.

[20] S. Khan and others, “A computer vision-based vehicle

detection system leveraging deep learning,” in 2024 IEEE 1st

Karachi Section Humanitarian Technology Conference

(KHI-HTC), Tandojam, Pakistan, Jan. 2024, pp. 1–7. doi:

10.1109/KHI-HTC60760.2024.10482163.

[21] U. L. Yuhana, G. Edo, and H. Syarif, “Enhancement of

blurred Indonesian license plate number identification using

multi-scale information CNN,” in 2023 3rd International

Conference on Smart Generation Computing,

Communication and Networking (SMART GENCON),

Bangalore, India, Dec. 2023, pp. 1–6. doi:

10.1109/SMARTGENCON60755.2023.10442912.

[22] A. T. Musaddid, A. Bejo, and R. Hidayat, “Improvement of

character segmentation for Indonesian license plate

recognition algorithm using CNN,” in 2019 International

Seminar on Research of Information Technology and

Intelligent Systems (ISRITI), Yogyakarta, Indonesia, Dec.

2019, pp. 279–283. doi:

10.1109/ISRITI48646.2019.9034614.

[23] I. W. Notonogoro, Jondri, and A. Arifianto, “Indonesian

license plate recognition using convolutional neural

network,” in 2018 6th International Conference on

Information and Communication Technology (ICoICT),

Bandung, Indonesia, May 2018, pp. 366–369. doi:

10.1109/ICoICT.2018.8528761.

[24] S. J. Fusic, S. Karthikeyan, H. Ramesh, and A. Subbiah,

“Vehicle license plate detection and recognition using neural

network,” in 2020 4th International Conference on

Computing, Communication and Signal Processing

(ICCCSP), Chennai, India, Sep. 2020, pp. 1–5. doi:

10.1109/ICCCSP49186.2020.9315206.

[25] A. Rocque and others, “Enhancing traffic violation

enforcement: A system utilizing helmet and number plate

detection,” in 2023 OITS International Conference on

Information Technology (OCIT), Raipur, India, Dec. 2023,

pp. 598–604. doi: 10.1109/OCIT59427.2023.10431231.

[26] C. K. Sahu and others, “A comparative analysis of deep

learning approach for automatic number plate recognition,” in

2020 4th International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), Palladam, India,

Oct. 2020, pp. 932–937. doi: 10.1109/I-

SMAC49090.2020.9243424.

[27] A. C. Jeba Malar and others, “Automatic number plate

recognition system using deep learning algorithms and image

processing for surveillance,” in 2024 9th International

Conference on Science, Technology, Engineering and

Mathematics (ICONSTEM), Chennai, India, Apr. 2024, pp. 1–

5. doi: 10.1109/ICONSTEM60960.2024.10568583.

