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Abstract  

The precise identification and reading of Indonesian vehicle number plates are important in many areas, including the 

enforcement of law, collection of charges, management of parking areas, and safety measures. This study integrates the 

implementation of the YOLOv8 object detection algorithm with three OCR methods: EasyOCR, TesseractOCR, and 

TensorFlow. YOLOv8 is capable of identifying license plates from images and videos at a high speed and reliability under 

different conditions and therefore is used in this study to perform plate detection in images and videos. After licenses are 

detected, OCR techniques are performed to segment and read the letters. Both EasyOCR and TesseractOCR performed 

moderately well on static images achieving accuracy rates of 70% and 68% respectively, but both suffered significantly lower 

performance in video scenarios. Of the 100 video frames, EasyOCR was able to correctly identify characters in 61 frames and 

TesseractOCR in 58 frames, while the TensorFlow-based model outperformed the other two with 75 correct recognitions. 

Furthermore, easy OCR and static images as input while the TensorFlow-based models completed them with 100% accuracy. 

This observation can be explained by its design, which utilizes a CNN with ReLU activation and Softmax outputs, trained on 

10,261 annotated characters and was enhanced with five different data augmentation techniques. The model shows strong 

performance in its ability to handle dynamic conditions such as motion blur, changing light conditions, and rotation of the 

plate angle. The results underscore the drawbacks of one-size-fits-all OCR applications in real-world use cases and stress the 

need for bespoke model training, as well as hierarchical contouring, in the context of automatic license plate recognition 

(ALPR). This study provides additional insights into ALPR systems by delivering a robust, scalable, and real-time tool for plate 

and character recognition, which is essential for intelligent transportation systems. 
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1. Introduction  

Effective recognition of Indonesian vehicle registration 

plates is essential for the enforcement of regulations and 

for ensuring public safety. The rigorous monitoring of 

violation offenses such as over-speeding, illegal 

parking, or driving into restricted areas presents 

growing difficulties, which can be addressed with the 

ALPR (Automatic License Plate Recognition) system 

due to its scalable capabilities. These systems enhance 

automated detection of offenders, minimizing the need 

for manual processes and increasing efficiency in 

enforcement operations. Furthermore, the detection of 

vehicle registration plates also serves the purpose of toll 

fee collection, parking management, and security 

surveillance where immediate identification of vehicles 

is required. 

The classical methods of image processing continue to 

be useful in ALPR systems because of their 

straightforwardness and flexibility. One research 

employed morphological techniques followed by KNN 

to solve recognition issues for Indian plates due to their 

unconventional shapes [1]. The combination of 

Gaussian noise removal along with contour-based 

segmentation contributed towards reliable detection of 

plates in vehicles [2]. Another work applied contouring 

and edge detection to address problems with 

https://doi.org/10.29207/resti.v9i3.6310
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/
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illumination differences [3]. Pipelines designed for 

plate recognition and traffic management have been 

implemented using OpenCV, proving adaptability for 

real-life traffic situations [4]. Morphological methods 

have been applied to achieve high accuracy for 

Indonesia's plate recognition [5]. Stroke width 

transform and neural networks were applied to number 

plate detection and classification. Morphological 

preprocessing helped in the recognition of candidate 

plates [6]. Plate recognition together with character 

segmentation was enhanced using a combination of 

histogram equalization and Sobel edge detection [7].  

The You Only Look Once (YOLO) algorithm for object 

detection has found application in License Plate 

Recognition (LPR) systems due to its efficiency and 

precision. In a comparison study on the versions of 

YOLO (v5, v7, v8, v9), it was reported that YOLOv8 

outperformed all others in precision and recall, 

especially under varying lighting conditions [8]. Other 

researches also show that the integration of YOLO with 

EasyOCR achieved 94% accuracy for parking system 

plate recognition [9]. Moreover, YOLOv8 was also 

incorporated into the SAMBARA system aimed at 

automating the tax verification and counterfeit plate 

detection processes in Indonesia [10]. As for other 

applications of YOLO, one study combined YOLO 

with ResNet to improve parking management systems 

[11]. YOLOv5 also found use in traffic monitoring and 

parking systems with remarkable accuracy in detection 

[12]. A combination of EasyOCR, Tesseract OCR, and 

YOLOv5 enabled a recognition accuracy of 95% [13]. 

YOLOv8 customized for Iranian motorcycle plates 

achieved 99% detection accuracy [14]. Further 

enhancements to YOLOv5 with GRU for character 

recognition increased the accuracy to 98.98% [15]. 

Advanced versions of YOLOv5 developed for Indian 

plates detected them with 99.1% accuracy [16]. Another 

system incorporated YOLOv5 into Secure Park, a real-

time intrusion detection system designed with the 

Microsoft Vision API and OCR [17]. Real-time 

detection optimization for urban traffic environments 

were addressed, including background noise, and 

obstacles covering the plates were tackled [18]. 

Extensive work has been done towards Indonesian LPR 

systems, one example being a 94% accurate detection 

using a YOLOv8 and EasyOCR-based system,  proving 

resilience in identifying non-conventional plates under 

difficult circumstances [19].   

The ease of performing license plate recognition (LPR) 

operations has significantly improved with the 

introduction of convolutional neural networks (CNNs), 

primarily because these systems are now capable of 

overcoming substantial environmental noise. Robust 

Recognition OCR technology incorporated CNNs to 

enhance recognition accuracy during variable 

conditions [20]. Recognition of blurred license plates 

within Indonesia was enhanced through the use of 

multi-scale CNN models [21]. Character recognition for 

noisy data was improved with the use of sliding 

windows and CNNs [22]. The ability of CNNs to handle 

noise was illustrated through his robust recognition of 

Indonesian plates with obstructions [23]. Neural 

processing has shown versatility to different plate 

shapes and angles which would allow for diverse 

conditions of implementation [24]. Further refinements 

to segmentation techniques CNNs provided enhanced 

precision in noisy environments[22]. 

ALPR systems are getting more traffic fines and 

infractions enforcement violations using ALPR 

Automated license plate recognition systems integrated 

with traffic safety systems. One implementation that 

issued graduated penalties for road behavior OCR based 

recognition of helmet riding showed restriction 

improved road safety. License and insurance 

verification enforcement automation has also been 

proposed as non-compliance augmented issuing 

penalties OCR zero regard pay [25]. The systems 

developed in these studies have proven the 

effectiveness of LPR in advancing the goal of 

automating the enforcement of traffic laws. Comparison 

studies have been very productive in understanding the 

diverse advantages and disadvantages of different LPR 

systems. Work on Indian plates is documented in the 

form of review focusing on traditional and YOLO 

approaches [26]. There are also comparisons of YOLO 

and traditional edge detection that demonstrate the 

importance of deep learning to surveillance systems 

[27]. 

Existing works show that OCRs like EasyOCR and 

TesseractOCR make use of YOLO framework for 

license plate detection. Thus, this study has two 

objectives: first, to implement the YOLO algorithm for 

vehicle license plate detection in images and videos, 

and second, to evaluate OCRs EasyOCR, TesserOCR 

and those implemented with TensorFlow. Moreover, 

this study analyzes the dynamic video footage of the 

license plates to test algorithms for character 

recognition in real-time scenarios. For each image of 

the license plate, three main parts are defined: the 

regional code (letters) as the first segment, the plate 

number (digits) as the second segment, and sub-

regional code (letters) as the third segment. This 

research intends to devise methods of recognizing 

license plate characters, particularly from video data, so 

as to analyze the effectiveness of OCRs and the 

segmentation comparison with the models from 

TensorFlow.  

Most of the existing YOLO-OCR implementations 

target the US, Europe and India which have different 

standards from Indonesia and are thus, poorly adapted 

to the Indonesian format. These models are not 

equipped to deal with the alphanumeric strings, fonts, 

spacing, and region code variations that are unique to 

Indonesian plates. 

This study focuses on these limitations by utilizing a 

segmented method based on Indonesia's tectonic plate 

configuration, in conjunction with a TensorFlow model. 
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2. Methods 

This study involved several steps in relation to the 

objectives of license plate recognition and character 

recognition. The first step uses the YOLO algorithm to 

detect license plates because of its speed and accuracy 

in locating plates within images or video frames. After 

detection, the next step is to segment the detected plate 

into three parts: the regional code of the plate's letters, 

the numeric portion of the plate as digits, and the sub-

regional code which are also letters. 

Character recognition involves comparative analysis 

using three approaches: EasyOCR, TesseractOCR and 

one based on TensorFlow. These approaches will be 

tested for their ability to recognize characters in still and 

video images. To assess the robustness of the system, 

video analysis is conducted in real time, simulating 

actual working conditions that test the algorithms under 

varying light, angle, and environmental changes. Each 

OCR method's results are benchmarked against one 

another on accuracy, processing time, and 

dependability, with the ultimate goal being the 

identification of the most suitable method for the 

recognition of dynamically changing conditions. This is 

illustrated in Figure 1. 

 

Figure 1. Comparative Model Plat Number Research Process 

2.1 License Plate Detection with YOLOv8 

The specifications of the device detail its parts and 

components, highlighting a 12th Gen Intel(R) Core 

(TM) i7-12700 2.10 GHz processor, 32.0 GB of RAM 

with 31.8 GB usable, and an NVIDIA GeForce RTX 

3060 Ti GPU. The sistem is configured with Windows 

11 Operating System and uses Python version 3.9.2 

alongside YOLOv8 for object detection, Tesseract 

0.3.13 for OCR, and EasyOCR 1.7.1 for advanced text 

recognition. 

The initial dataset consists of 861 images, with each 

image annotated with bounding boxes to mark license 

plates. This annotation process is conducted using tools 

like YOLO and LabelIMG to ensure accurate 

localization of license plates. The model handler uses 

YOLO (You Only Look Once) to either initialize a new 

model or load an existing one. If the specified model 

file ends with ̀ .yaml`, it initializes a new YOLO model; 

if it ends with `.pt`, it loads a pre-trained model.  

This optimization process is expressed as shown in 

Equation 1: 

𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜃 ∑ 𝐿(𝑀𝜃(𝑥𝑖), 𝑦𝑖)
𝐸
𝑖=1                      (1)       

Where 𝑥𝑖 represents the input images, 𝑦𝑖  represents the 

corresponding labels, 𝑀𝜃 is the model parameterized by 

𝜃, and 𝐿 is the loss function. This equation describes the 

process of finding the optimal model parameters 𝜃𝑜𝑝𝑡  

by minimizing the cumulative loss over a dataset of ∑ 

examples. 

The model evaluation on a validation dataset V is given 

by Equation 2. 

P =  Mpretrained (V)               (2) 

where P represents the performance metrics, and 

Mpretrained  is the pre-trained model applied to the 

validation dataset V. This step computes metrics to 

assess the model’s accuracy and effectiveness. 

The prediction process for new input images I is 

expressed as Equation 3. 

ŷ = Mpretrained (I)                              (3)                                  

where ŷ represents the bounding box predictions for 

license plate localization, and Mpretrained  is the pre-

trained model applied to the input images I. 

2.2 Segmentation 

For a clearer understanding of the segmentation of 

Indonesian license plates, refer to Figure 2. In this 

illustration, Segment 1 represents the regional code, 

such as the letter "B," Segment 2 represents the numeric 

identifier, such as "6401," and Segment 3 represents the 

sub-regional code, such as "VRL". This research 

focuses solely on license plates and does not extend to 

tax-related aspects, as indicated by the numbers 

"08.2028" displayed on the plate. 

 

Figure 2. Sample Segmentation Indonesian Plate Number 

The process involves license plates successfully 

detected by YOLO with a confidence percentage of 

50% being standardized to a pixel size of 400 x 200 and 

divided into three segments. Segment 1 covers the pixel 

range [10:128, 10:60], Segment 2 covers [10:128, 

60:238], and Segment 3 covers [10:128, 238:400]. 

2.3 OCR 

OCR is a technology that converts physical text into 

digital data. In addition to its use in finance, healthcare, 

and education, OCR supports traffic management by 



 

 Windu Gata et al                                 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

                                                                                                                                                                              547 

 

reading vehicle license plates and detecting violations. 

This technology enhances efficiency and accessibility, 

and drives digital transformation across various fields. 

EasyOCR and Tesseract were selected due to their 

widespread adoption and open-source availability. 

TensorFlow was chosen to explore a custom-trained 

deep learning approach. Other advanced frameworks 

such as PaddleOCR or Vision Transformers were not 

included due to complexity in model customization and 

training requirements outside the study's scope. 

2.3.1 EasyOCR 

EasyOCR is a powerful OCR tool developed by Jaided 

AI. Supporting over 80 languages, it’s built with 

PyTorch for efficient text extraction from images, 

scanned documents, or handwriting. EasyOCR is ideal 

for tasks like reading license plates, processing 

invoices, and automating text extraction across 

industries. 

 

Figure 3. EasyOCR Framework 

The EasyOCR framework Figure 3 is composed of 

several important processes for Optical Character 

Recognition. It starts with pre-process, which enables 

the corresponding image to be input for the text to be 

detected. The CRAFT Character Region Awareness For 

Text detection model recognizes the regions that 

contain text, then moves to Mid-Process stage to refine 

these regions. Text recognition is done using the 

Residual Network (ResNet), Long Short-Term Memory 

(LSTM), and Connectionist Temporal Classification 

(CTC) pipeline along with other recognition models. 

Patterns are converted into text and the decoding is done 

using greedy decoders or other decoders which translate 

recognized patterns into text.  

Events defined above are all finalizing processes which 

can be done after text is recognized and a final output is 

required. These outputs can be refined further which 

leads to better uses of OCR systems. The accuracy of 

machine-read text is enhanced with the addition of a 

Data Generator and a Training Pipeline under the 

EasyOCR framework. 

2.3.2 TesseractOCR 

Tesseract OCR is an Optical Character Recognition 

system, which is one of the systems available free of 

charge on the internet. It was first offered by the firm 

Hewlett-Packard and was later enhanced by Google. 

The program captures hand-written documents or 

printed texts found in images and documents 

transforming them into texts which can be edited 

electronically. Tesseract offers flexibility, 

conceptualized document scanning, automated text 

processing and customization which in return benefits a 

wide range of use. 

 

Figure 4. The process of Tesseract OCR 

In Figure 4, the Tesseract OCR process begins with an 

input image sent via API request. The image undergoes 

preprocessing using Leptonica for quality 

enhancement. The Tesseract engine, supported by 

trained data sets, extracts text from the processed image. 

Post-processing then refines the output, delivering 

accurate text as the final API response. 

2.3.3 Character Detection using YOLO and 

TensorFlow 

Character Detection on License Plates: The next phase 

involved identifying the individual characters on the 

license plate. At this stage, a secondary instance of 

YOLO was employed, specifically for isolating 

characters within the plate’s boundaries. Each 

alphanumeric character, whether a letter or a digit, was 

enclosed in its own bounding box, ensuring that each 

character was distinctly separated from the others. 

Character Recognition with TensorFlow: In the final 

stage, the system focused on recognizing each of the 

detected characters and classifying them as the correct 

letter or number, see Figure 5. 

In this research, a dataset of 10,261 annotated characters 

from Indonesian license plates was manually collected 
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from images and videos. The data was taken from 

various regions in Indonesia to ensure diversity in plate 

formats, you can see the datasets on this dataset. 

Labeling was performed manually using LabelImg, 

with separate bounding boxes for each character. 

 

Figure 5. The Process of TensorFlow 

This process could be summarized through a single 

formula-like expression that outlined the series of 

transformations the input image underwent as it passed 

through the layers of the CNN.  

The CNN model started with an input layer that 

represented the image with a height and width of 64 

pixels and 3 colour channels (RGB).  

This could be expressed mathematically as shown in 

Equation 4: 

X ∈ R⁶⁴×⁶⁴×³                (4)                            

This convolution produced an output with dimensions 

of 62×62 and 32 channels, as the image size slightly 

decreased due to the application of filters without 

padding. Subsequently, the bias b1 was added to the 

convolution result, and the ReLU activation function 

was applied. The ReLU function transformed all 

negative values to zero, introducing non-linearity to the 

output, referred to as H1. The final output H1 had 

dimensions of 62×62×32, where 32 represented the 

number of output channels, capturing basic features 

detected from the input image. This process was 

expressed in Equation 5: 

H₁ = ReLU(X * W₁ + b₁), H₁ ∈ R⁶²×⁶²×³²               (5)     

The first max-pooling layer applied 2×2 pooling, 

reducing the spatial dimensions of the output while 

retaining the 32 channels from the previous layer. This 

operation was expressed in Equation 6: 

H₂ = MaxPool(H₁), H2 ∈ R⁶⁴×⁶⁴×³²                         (6)        

The second convolutional layer applied 64 filters of size 

3×3 with ReLU activation, generating feature maps. 

This was followed by a second max-pooling layer that 

used 2×2 pooling, further reducing the spatial 

dimensions. The operations for this layer were 

expressed mathematically in Equation 7: 

H₃ = ReLU(H₂ * W₂ + b₂), H₃ ∈ R²⁹×²⁹×⁶⁴            (7)    

This resulted in an output with dimensions of 

14×14×64, where 14×14 was the reduced spatial size, 

and 64 was the number of channels, consistent with H3. 

This operation was expressed as shown in Equation 8: 

H₄ = MaxPool(H₃), H₄ ∈ R¹⁴×¹⁴×⁶⁴)                      (8)          

In the third convolutional layer, the output tensor had 

dimensions of 12×12×128, where 12×12 represented 

the spatial dimensions after applying the convolution, 

and 128 was the number of output channels 

corresponding to the filters. This operation was 

expressed in Equation 9: 

𝐻5 =  𝑅𝑒𝐿𝑈(𝐻4 ∗  𝑊3 + 𝑏3), 𝑤ℎ𝑒𝑟𝑒 𝐻5 ∈
𝑅12 ×12×128                 (9) 

In the next step, the output dimensions were reduced to 

6×6×128. The spatial dimensions (6×6) resulted from 

the pooling operation, which shrank the width and 

height of H5 from 12×12 to 6×6. The depth (128 

channels) remained unchanged, preserving the feature 

complexity learned in the previous layer. This operation 

was expressed in Equation 10: 

H₆ = MaxPool(H₅), where H₆ ∈ R⁶×⁶×¹²⁸           (10) 

Convert the 3D tensor H6 into a 1D vector with a size of 

4608, preparing it for input into the fully connected 

layers. This transformation is expressed in Equation 11:   

f = Flatten(H₆), where f ∈ R⁴⁶⁰⁸                           (11)      

W4: The weight matrix for this dense layer, consisting 

of weights that the model learned to connect each input 

feature in f to each of the 128 units. 

b4: The bias term for the dense layer, which adjusted 

the output before the activation function was applied. 

⋅: Represented matrix multiplication between f and W4. 

The operation of this dense layer was described by 

Equation 12: 

h₇ = ReLU(f ⋅ W₄ + b₄), h₇ ∈ R¹²⁸             (12) 

Finally, the output layer consisted of a dense layer with 

10 units for numbers and 36 units for characters, 

represented as nnn. A softmax activation function was 

applied to produce probabilities for each class. This 

operation was described in Equation 13: 

y = Softmax(h₇ ⋅ W₅ + b₅), y ∈ Rn                     (13)              

The test set was held out and never used during training 

or validation, ensuring a fair evaluation. This division 

was applied to address specific challenges that arose 

when identifying and classifying characters, especially 

when dealing with problematic or ambiguous symbols 

such as (~).  

The ImageDataGenerator was employed to enhance the 

training data by augmenting images through 

transformations that helped the model generalize better. 

https://zenodo.org/records/15595347/files/dataset.zip
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By rotating, shifting, and zooming the images, the 

generator simulated real-world variations that were 

particularly beneficial for dealing with the diversity of 

characters and numbers in different situations. The 

robustness of the dataset was achieved through 

transformations, such as horizontal and vertical shifts 

and slight image shearing. Gaps arising from these 

transformations were filled using nearest-neighbor 

filling, which maintained uniformity, allowing for the 

effective augmentation of image information without 

loss. This configuration enhances model dependability, 

particularly in the context of unseen data, improving the 

accuracy in diverse character recognition scenarios. 

Table 1. Training and Validation Results of CNN + Softmax over 10 

Epochs for Character Recognition 

Epoch Loss Accuracy Val_Loss Val_Accuracy 

1 0.2548 0.9279 0.1887 0.9641 

2 0.0581 0.9838 0.2252 0.9575 

3 0.0345 0.9906 0.2768 0.9608 

4 0.0244 0.9933 0.3044 0.9700 

5 0.0220 0.9944 0.3559 0.9711 

6 0.0160 0.9959 0.2714 0.9758 

7 0.0160 0.9960 0.3324 0.9707 

8 0.0129 0.9967 0.2765 0.9729 

9 0.0105 0.9972 0.2940 0.9667 

10 0.0116 0.9973 0.3625 0.9676 

Table 1 represented the CNN model in this study which 

was trained over 10 epochs using a license plate 

character dataset, which was divided into digits (0–9) 

and letters (A–Z). The dataset was split into 90% for 

training and 10% for testing. To enhance model 

generalization, five types of image augmentation 

techniques were applied to the training set. 

3. Results and Discussions 

3.1 License Plate Detection with YOLOv8 

As shown in Figure 6, based on the provided F1-

Confidence Curve and detection results, the model 

demonstrated high performance in license plate 

recognition. The F1-Confidence Curve indicated that 

the model achieved a peak F1 score close to 1.0, with 

the F1 score for all classes reaching approximately 0.99 

at a confidence threshold of 0.547. 

This result reflected a strong balance between precision 

and recall, showing the model’s ability to accurately 

detect license plates under various conditions. 

Figure 7 displayed multiple images of detected license 

plates, each highlighted with a blue bounding box 

labeled "license," indicating successful detection. The 

model was able to effectively identify plates across 

various angles, lighting conditions, and vehicle types, 

demonstrating its robustness in real-world settings. 

 

Figure 6. F1- Score - Identification Plate from Figure 

 

Figure 7. Sample Plate from Frame 

3.2 EasyOCR 

EasyOCR was utilized to recognize each character for 

sections 1, 2, and 3. With static or non-moving data, 

EasyOCR accurately recognized 602 out of 861 license 

plates, which was a success rate of 70%. However, for 

dynamic data, like video footage, EasyOCR had 

difficulty with accuracy in character-by-character 

recognition.  

This issue was caused by movement within the images 

resulting in blurriness and lack of sharpness, which 

severely hindered recognition accuracy. This 

demonstrated that the effectiveness of OCR, especially 

with background motion or fluctuating light conditions, 

heavily relied on the quality of input data. The result 

could be observed in this video. 

3.3 TesseractOCR 

As with segments 1, 2, and 3, Tesseract OCR was used 

for character recognition. For static data, Tesseract 

OCR recognized 585 license plates out of 861 with an 

accuracy of 68%. However, when tested with dynamic 

https://zenodo.org/records/15595347/files/Easyocr.mp4?download=1
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data (video data), performance dropped significantly, 

just like with EasyOCR, due to blurriness and loss of 

detail from motion smoothing.  

This showed that both Tesseract OCR and EasyOCR 

were greatly influenced by the quality of data provided, 

particularly in situations where there was movement or 

visual instability, which adversely impacted precision 

and effectiveness. The results could be viewed in this 

video.  

3.4 Character Detection within Plates using YOLO 

From character-level detection results on plates, it could 

be noticed from the F1-Confidence Curve (Figure 8) 

that the model was able to detect all characters on the 

plate with a total of 10,261 characters. Furthermore, the 

curve demonstrated an F1 score of a rather high 0.97 for 

all classes at a 0.527 confidence threshold. This showed 

that at this threshold, the model captured an excellent 

blend of precision and recall, which resulted in high 

accuracy of character detection. The F1 score remained 

high with increasing confidence levels, up until a sharp 

drop, suggesting that while the model accurately 

detected characters within certain parameters, it 

struggled beyond those parameters. Altogether, the 

graph indicated model robustness in terms of precision 

and recall when detecting specific characters for license 

plates. 

 

Figure 8. F1 Score for Detection Characters on the Plate 

 

Figure 9. Sample Characters Detection on the Plate 

Sample images of characters detected on license plates 

were shown in Figure 9. All characters embedded 

within the license plates were enclosed within bounding 

boxes marked as "contain," signaling that each 

alphanumeric element had been precisely detected and 

successfully segmented. The various license plates 

captured at different angles and under different light 

conditions were reliably processed with all characters 

identified and separated. 

This showcased the model's strong capabilities in 

detailed character-level recognition, which was 

important for accurate recognition of license plates. The 

uniform bounding illustrated that the model could 

differentiate discrete characters, permitting meta-

analysis character-by-character, which was critical for 

vehicle identification and automated plate recognition 

in real-life applications. 

TensorFlow assisted in detecting entire static license 

plates in a given image. In dynamic scenarios, this 

algorithm was capable of number detection with YOLO 

performing character detection, and it worked 

remarkably well even under difficult conditions. 

https://zenodo.org/records/15595347/files/Tesseract.mp4?download=1
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As shown in Figure 10, one of the frames from the 

implementation video demonstrated how the model 

tracked and recognized license plates on motorcycles 

within a moving stream of traffic. License plate 

detection occurred on two motorcycles as bounding 

boxes encapsulating the numbers were drawn and every 

character was labeled in green. This frame showcased 

the capabilities of the model to track and recognize 

letters in a complex background containing a lot of 

motion, dynamic perspectives, and elements of nature. 

The precision and segmentation in such a complex 

environment demonstrated the model’s versatility and 

accuracy for real-time traffic video analysis. 

 

Figure 10. Frames of Implementation Video on the Street 

In Figure 11, several samples of detected license plates 

are shown, where each plate is segmented and each 

character is enclosed within a green bounding box. The 

model successfully detects and isolates individual 

characters on various plates, displaying a clear and 

consistent identification of letters and numbers.  

This sample set demonstrated the model's capability to 

handle different plate formats and orientations, 

accurately recognizing characters despite variations in 

font, spacing, and slight image distortions. The 

precision of the bounding boxes around each character 

indicated the model’s robustness in distinguishing 

characters, which was essential for applications 

requiring detailed analysis, such as automated license 

plate recognition in traffic systems. For detailed 

analysis on this video. 

 

Figure 11. Sample Detect Plate Number 

3.5 Evaluation 

The comparative study on EasyOCR, TesseractOCR, 

and TensorFlow in conjunction with YOLO for license 

plate recognition offered important observations 

regarding OCR efficacy in different contexts. While the 

three approaches had identical F1 scores of 0.97 for the 

YOLO-based facility of license plate detection, 

character recognition performed quite differently. This 

underscored that OCR systems should not solely be 

evaluated on detection performance but also on the 

fidelity of recognition in both static and dynamic 

contexts. 

Table 2. Evaluation Using Static Figure and Video 

OCR Method Algorithm 

Dataset 

Character 

&  

Accuracy 

Image 

Video 

Per 100 

Frames 

EasyOCR ResNet, 

LSTM, 

CTC 

- 70% 61% 

TesseractOCR Tesseract 

Engine 

(Hewlett 

Packard + 

Google) 

- 68% 58% 

TensorFlow CNN + 

Relu + 

SoftMax 

10.261 

10 Epoch 

Accuracy 

99.7% 

100% 75% 

In Table 2, a comparison was made between three OCR 

systems with respect to character recognition in license 

plates from still and animated images (videos). In the 

case of still images, EasyOCR scored 70%. 

TesseractOCR scored slightly lower at 68%. 

TensorFlow scored 100%, supported by a training 

dataset for 10 epochs which gave a training accuracy of 

99.7%. In video data (based on 100 test frames), 

EasyOCR recognized characters in 61 frames, 

TesseractOCR in 58 frames, and TensorFlow in 75 

frames. 

These results demonstrated that while EasyOCR and 

TesseractOCR performed well with static images, their 

performance dropped substantially in dynamic video—

likely due to motion blur and changes in lighting and 

frame stability. On the other hand, TensorFlow 

demonstrated stronger robustness and generalization, 

maintaining high accuracy even in real-world video 

environments. This made TensorFlow the most 

effective OCR method among the three for 

implementing automated license plate recognition 

systems, particularly in dynamic, real-time footage. 

Failure cases were observed primarily in video frames 

with heavy motion blur or partial occlusion. EasyOCR 

and Tesseract frequently misclassified characters with 

similar shape. YOLO occasionally missed plates at 

extreme angles. These findings indicated the need for 

enhanced pre-processing and real-time frame 

stabilization in future deployments. 

While TensorFlow demonstrated the highest accuracy, 

a statistical t-test was not conducted to verify the 

significance of performance differences. This will be 

explored in future work to confirm reliability across 

various scenarios. 

3.6 Processing Time Comparison 

https://zenodo.org/records/15595347/files/CNN.mp4?download=1


 

 Windu Gata et al                                 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

                                                                                                                                                                              552 

 

The average time required to process a single static 

image was approximately 0.14 seconds for EasyOCR, 

0.22 seconds for Tesseract, and 0.27 seconds for 

TensorFlow. For video data (per frame), TensorFlow 

required the longest due to sequential character 

segmentation, averaging 0.35 seconds per frame. 

4. Conclusions 

This study investigated the detection and recognition of 

Indonesian license plates by integrating YOLO for 

object detection and three OCR methods: EasyOCR, 

TesseractOCR, and TensorFlow for character 

recognition. YOLOv8 demonstrated strong detection 

capabilities across both static images and video data, 

effectively localized license plates under real-world 

conditions. 

In the character recognition phase, each OCR method 

showed varying levels of performance. EasyOCR and 

TesseractOCR achieved moderate accuracies of 70 

percent and 68 percent on static images. However, their 

performance significantly dropped when applied to 

dynamic video frames, with accuracy decreased to 61 

percent and 58 percent out of 100 frames respectively. 

On the other hand, the TensorFlow-based CNN model 

achieved 100 percent accuracy on static images and 75 

percent accuracy on dynamic video. 

These results indicated that the TensorFlow model, 

supported by CNN architecture with ReLU and 

Softmax layers, was more reliable and adaptable than 

traditional OCR engines. The study also highlighted the 

importance of structured plate segmentation and a well-

prepared dataset in improving OCR accuracy. 

Beyond selecting the best-performing OCR, future 

work would explore hybrid approaches combining rule-

based filtering with deep learning, adaptive 

segmentation for plates with variable layouts, and the 

integration of transformer-based OCR models for 

enhanced contextual understanding and this system 

could be extended to support multi-object tracking, 

behaviour analysis, and improved performance in 

challenging conditions such as low light, occlusions, or 

adverse weather. 

While the TensorFlow model achieved exceptional 

performance on static images (100% accuracy), the 

diverging trend between training and validation loss 

during model training, along with the significant 

performance drop in video scenarios (75%), suggested 

potential mild overfitting. The 3% gap between final 

training accuracy (99.73%) and validation accuracy 

(96.76%) indicated the model might have partially 

memorized training patterns. However, the reasonable 

video performance suggested the model had learned 

generalizable features. The overfitting appeared 

manageable but needed to be addressed in future work 

through better regularization and validation strategies. 

Future implementations should have incorporated early 

stopping mechanisms, cross-validation techniques, and 

enhanced regularization methods to improve model 

generalization and ensure more robust performance 

across diverse real-world conditions. 
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