
 Received: 11-01-2025 | Accepted: 12-04-2025 | Published Online: 17-04-2025

343

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 2 (2025) 343 - 356 e-ISSN: 2580-0760

Large Language Model-Based Extraction of Logic Rules

from Technical Standards for Automatic Compliance Checking

Rizky Nugroho1*, Adila Krisnadhi2, Ari Saptawijaya3
1,2,3Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

1rizky.prasetya21@ui.ac.id, 2adila@ui.ac.id, 3saptawijaya@ui.ac.id

Abstract

In this research, we design logic rules as a representation of technical standards documents related to ship design, which will

be used in automatic compliance checking. We present a novel design of logic rules based on a general pattern of technical

standards’ clauses that can be produced automatically from text using a large language model (LLM). We also present a

method to extract said logic rules from text. First, we design data structures to represent the technical standards and logic

rules used to process the data. Second, the representation of technical standards is produced manually and tested to ensure

that it can give the same conclusion as human judgment regarding compliance. Third, a variation of prompting methods,

namely pipeline method and few-shot prompting, is given to LLM to instruct it to extract logic rules from text following the

design. Evaluation against the logic rules produced shows that the pipeline method gives an accuracy score of 0.57, a precision

of 0.49, and a recall of 0.62. On the other hand, logic rules extracted using few-shot prompting have an accuracy score of 0.33,

precision of 0.43, and recall of 0.5. These results show that LLM is able to extract a logic rule representation of technical

standards. Furthermore, the representation resulting from the prompting technique that utilizes the pipeline method has a

better performance compared to the representation resulting from few-shot prompting.

Keywords: automatic compliance checking; logic rules; technical standards; large language model; prompting

How to Cite: R. Nugroho, A. Krisnadhi, and A. Saptawijaya, “Large Language Model-Based Extraction of Logic Rules from

Technical Standards for Automatic Compliance Checking ”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 9, no. 2, pp. 343 - 356,

Apr. 2025.

DOI: https://doi.org/10.29207/resti.v9i2.6285

1. Introduction

In the context of shipping, classification is a process of

verifying whether a vessel (ships or other floating

structures) complies with technical standards

throughout the vessel’s life [1]. This verification is done

by anorganizatio independent governing body called a

classification society,. Such a classification society

usually works at a national level, such as Biro

Klasifikasi Indonesia (BKI) in Indonesia, or sometimes

it extends beyond national borders, such as the

American Bureau of Shipping in the US.. A

classification society checks whether the design

documents of a vessel, as well as the corresponding

(physically built) vessel itself, against recognized

technical standards through document examinations

and physical surveys.

However, the compliance checking is still done

manually. Typically, a (human) reviewer reads the

technical standards to obtain the design requirements.

Next, the data regarding the vessel whose compliance is

to be checked is gathered from the design documents.

Finally, the conclusion about compliance is made by

checking the data against the requirements of technical

standards. This manual process has many weaknesses,

mainly because it is prone to error and its low efficiency

[2].

Compliance checking is a common task in engineering,

construction, and architecture. As a result, there have

been a number of research works done concerning the

automation of the process. Given an object whose

compliance with the standards is to be checked, several

approaches utilize a knowledge graph to capture the

object’s data and SPARQL queries [3], sometimes

extended with custom-built rules, to represent the

requirements. [2], [4]-[9]. Others such as Xue and

Zhang [10] use logic programming rules to represent

technical standards, while Ren et al. [11] and Liu et al.

[12] employ deep learning models such as BERT [13]

and Bi-LSTM to learn the pattern of the technical

https://doi.org/10.29207/resti.v9i2.6285

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 344

standards and compare them with the data to determine

the compliance.

The aforementioned approaches possess several

shortcomings. They either obtain representation

through a manual process, depend on specific (natural

language) sentence patterns, or need a large, labeled

dataset for training deep learning models. A manual

process, such as that employed in [2], [4], [6], [7], [9]

requires intensive participation by the corresponding

domain experts, e.g., ship designers, structural

engineers, etc. Unfortunately, such domain experts are

not easily available. Meanwhile, methods that employ

rule-based extraction, which rely on specific sentence

patterns, such as those proposed in [5], [8], risks the

possibility of unaccounted patterns that may appear

when the standards are updated in the future. Finally, a

labeled dataset containing annotated text of technical

standards [11], [12] may not be available for the

domain in which the compliance checking is done, for

example, electrical installations or structural design of

ships.

In this paper, we propose an approach that can avoid

those shortcomings. Our approach makes use of

recently developed generative LLMs, like GPT and its

variants [14], Llama [15], and PaLM [16] to translate

the requirements from the standards into a set of logic

programming rules, which can then be run against data,

represented as logic facts, obtained from the object for

whom the compliance is to be checked. Specifically, we

focus on compliance checking of vessels and their

design documents with respect to the standards

provided by BKI.

Our approach leverages the ability of LLMs to extract

structured data from natural language texts through

prompt engineering, as shown in [17]-[19] to obtain a

logic rules representation of technical standards.

Employing LLM in our approach means we are able to

automate the generation of logic rules representation

without relying on intensive participation of domain

experts. In addition, the utilization of LLM through

prompt engineering lets us avoid the need for annotated

datasets. Lastly, we define a general pattern of

sentences found in the technical standard’s text to guide

the LLM in the translation process. We ensure the use

of a pattern general enough to be applied to any text in

the technical standards, which means it will be flexible

enough to account for any other sentence pattern that

may be introduced in the future.

In this research, logic programming rules are used as the

representation of technical standards. We argue that a

logic programming rule is the most appropriate

representation for technical standards since it is

inherently able to represent conditional sentences that

are prevalent in technical standards. On the other hand,

other representations, such as a knowledge graph, need

a more complex form, such as shown in [5], [6].

Overall, the contribution of this work is threefold. First,

we design logic programming rules that can be used to

represent technical standards in the ship construction

domain. Second, we develop prompts to extract the

logic rules as designed from texts using LLM. To the

best of our knowledge, there is no prior research that

employs LLM to extract logic rules from texts. Last, we

work on new documents that are technical standards

published by BKI.

This paper is organized as follows. After the

introduction, we discuss our research methods in

section 2, starting with a brief explanation of the

compliance checking process and logic programming

basics. Afterwards, we will explain our proposed

method, which consists of the design of the logic rules,

the prompt engineering we do to generate them, and the

evaluation scenarios. Then, we present the results and

discussion in Section 3. Lastly, we present the

conclusion of our research in Section 4.

2. Research Methods

We first briefly explain the basic definitions relevant to

the compliance checking process for vessel design and

construction, as well as basic concepts from logic

programming. Following these, we describe how the

requirements from the technical standards can be

represented as logic rules and then a prompt engineering

approach to actually produce such logic rules from the

requirements in the technical standards, which are

expressed in complex natural language sentences.

2.1 Compliance Checking Process

Generally, compliance checking involves three

components: requirements from technical standards, the

objects being assessed, complete with their property,

and the reviewer (human). The reviewer will read the

technical standards and find the requirements. He will

then gather the object’s properties from the design

documents. Afterwards, he will compare the property

with the requirement to determine whether the object

complies with the requirement. In some cases, the

reviewer may also conclude that the requirement is not

applicable to the object. We will use the term

compliance decision to refer to such a conclusion

throughout this paper.

We present an example of the compliance checking

process using the following clause: “Emergency

switchboard shall be installed above the uppermost

continuous deck and behind the collision bulkhead.”

This clause contains one sentence in which a

requirement must be fulfilled by an object. In this

clause, the object is “emergency switchboard” and it

must satisfy the requirement that is, “be installed above

the uppermost continuous deck and behind the collision

bulkhead.” A reviewer will then consult the design

document to check the position where the emergency

switchboard is installed. If the position is

simultaneously above the uppermost continuous deck

and behind the collision bulkhead, then the clause is

complied. Inversely, if the position does not satisfy the

requirement, then the clause is not complied with.

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 345

In automatic compliance checking, the machine will do

all the compliance checking processes from gathering

the requirements to making the conclusion, as shown in

Figure 1. Within the context of this research,

requirements inside clauses are represented by logic

rules, compliance decisions are obtained by executing

the logic rules, and the extraction of requirements is

done using LLM. To increase efficiency, the machine

should also do the data extraction from documents

related to compliance checking objects. However, for

this research, data extraction is done manually. We will

leave it for future research to include the extraction of

data automatically.

Figure 1. Illustration of automatic compliance checking. The area

inside the dashed border is the scope of this research

2.2. Logic Programming Basics

In logic programming, we start with disjoint sets 𝒫 of

predicates, ℱ of function symbols (including constant

symbols), and 𝒱 of variables. A term is recursively

defined as either a variable 𝑣 ∈ 𝒱, or a constant 𝑐 ∈ ℱ,

or an expression of the form 𝑓(𝑎1, … , 𝑎𝑛) where 𝑓 ∈ ℱ

is a function symbol of arity 𝑛 ≥ 1 and each 𝑎𝑖 are

terms. Constant symbols are also called atoms in

Prolog. An atomic formula is of the form 𝑝(𝑡1, … , 𝑡𝑛)

where 𝑝 is a predicate of arity 𝑛 ≥ 0, and each 𝑡𝑖 are

terms. A rule is a statement of the following form in

Equation 1

𝐻 ← B1, … , Bm (1)

𝐻, 𝐵1, … , 𝐵𝑚 are all atomic formulas or negations of

atomic formulas expressed in the form of

𝑛𝑜𝑡 𝑝(𝑡1, … , 𝑡𝑛). The rule in Equation 1 represents a

logical implication and can be read as

𝑖𝑓𝐵1, … , 𝐵𝑚 𝑡ℎ𝑒𝑛 𝐻.

The atomic formula 𝐻 is called the head of the rule,

while the set {𝐵1, … , 𝐵𝑚} is called the body of the rule.

If 𝑚 = 0, we say that the rule is a fact. A logic

program is then defined as a set of such rules. In the

context of such a logic program, one may pose a query,

which is just a conjunctive set of atomic formulas

𝐹1, … , 𝐹𝑘.

A list in logic programming is represented as either the

atom ‘[]’ representing an empty list or a compound

term with functor ‘.’ and two arguments representing

the head and tail of the list. The tail of the list is itself a

list, thus, a list can be represented in Equation 2.

 . (𝑡1, . (𝑡2, … . (𝑡𝑛, []))) (2)

each 𝑡𝑖 is a term, and n is the number of elements in a

list. For readability, special notation using square

brackets can be used, so (2) can be represented as
[𝑡1, 𝑡2, … , 𝑡𝑛]. Tuple and triple are terms in the form of

(𝑡1, … , 𝑡𝑛) where n is 2 and 3 for tuple and triple,

respectively.

Negation in the logic programming language Prolog is

implemented in the form of negation as failure. In this

type of negation, 𝑛𝑜𝑡 𝑝 is evaluated by trying to prove

𝑝. If 𝑝 is proven, then the negation 𝑛𝑜𝑡 𝑝 will fail. Since

Prolog operates under a closed world assumption,

whether 𝑝 is proven or not relies on whether the facts

related to 𝑝 exist.

In Prolog, the left arrow (←) is written using a

semicolon followed immediately by a dash, i.e., the

characters ‘:-’ (without the quotes). An example of a

simple logic program is given in Equation 3.

edge(a, b).
edge(b, c).
edge(c, d).

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, X), path(X, B). (3)

The semantics of logic rules can be understood as a

universally quantified logical implication. For example,

in the rules given in equation (3), we define path (A,B)
as a predicate that represents the existence of a path

between points A and B. The rules then can be read as

“path between A and B exists if there is an edge between

A and B.” It also checks for the path that passes through

other nodes before reaching B with the recursive call in

path(A, B) :- edge(A, X), path(X, B). This rule is then

read as “path between A and B exists if there is an edge

between A and X and there is a path between X and B,”

The conclusion of whether a path exists between two

points, say a and d, is obtained by running a query as

shown in Equation 4.

?- path(a, d). (4)

in which the existence of the fact edge(a, d) is checked.

When it is not found, the alternative rule is evaluated to

recursively check whether a path connecting a to d

through other nodes exists. For further details on the

semantics of logic programs, please refer to [20].

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 346

2.3. Overview of the Proposed Method

Technical standards in our context typically consist of

clauses that must be satisfied by a vessel or its design

documents. Each clause is expressed in the form of one

or more natural language sentences that convey the

meaning of obligation or necessity. For the purpose of

automating compliance checking, our aim is to

represent such a clause as a set of logic programming

rules. Meanwhile, data about a vessel or its design

documents are represented as a set of logic

programming facts. The compliance checking is then

realized by running a query (expressing a compliance

check for a particular object) against the logic

programming rules (expressing the requirements from

the standard and the database of facts corresponding to

all objects whose compliance is to be checked).

Since there are numerous requirements in technical

standards, it is generally infeasible to write logic

programs to represent all those requirements. Thus, the

second part of our proposed method consists of the use

of an LLM to generate a logic program that

approximately represents the requirements in the

standards. Specifically, we employ prompt engineering

over GPT-4o to obtain logic rules. The overall scheme

of our proposed method is shown in Figure 2.

Figure 2. Overall scheme of the proposed method.

2.4. Expressing Data as Facts

One of the parts of compliance checking is a database

of facts corresponding to objects whose compliance is

to be checked. These facts consist of the representation

of objects and their properties. In addition, they also

represent the relation between objects.

First, we define ObjectID as a representation of the

object. ObjectID is defined as a combination of number

and initials of the object. Second, we define facts that

represent the properties of objects. The category of the

object is represented as a fact named hasCategory. This

fact has two arguments, ObjectID and Category of the

object. Third, the facts that represent relationships

between objects are defined. A predicate named

objectRelation is used for this purpose. It may have

arity of 3 to represent S – V – O structure or arity of 2

to represent S – V structure. Last, we define a fact to

represent information about objects’ numerical value.

The predicate named hasValue is defined with an arity

of 2 and arguments which consist of ObjectID and

Number. The summary of the facts is presented in

Table 1.

Table 1. Facts

To better illustrate how data is represented as logic

programming facts, we choose one clause as an

example, that is “If internal combustion engines and

boiler plants operating on heavy fuel, provision is to be

made to ensure that internal combustion engines and

boiler plants can be operated temporarily on fuel which

does not need to be preheated”. This clause gives

requirements regarding a ship’s machinery installation,

specifically the combustion engine and boiler plant. We

present some data related to those objects and their

representation as facts in Table 2.

Table 2. Example of Facts

2.5. Expressing Clauses as Logic Rules

Logic rules representation is produced based on the

clauses. Our approach differs from the method

explained in [10] in that we use a general pattern that is

applicable to all clauses to minimize variation in logic

rules. We observe the clauses used in technical

standards to find the general pattern. Based on that

consideration, we defined two components of a

sentence, prerequisite and main requirement.

Prerequisite is a requirement that has to be satisfied so

that the clause is applicable to a given object. Main

requirement is a requirement that has to be satisfied by

the object so that the clause is deemed as complied. We

use our earlier example to illustrate this concept in

Figure 3.

Figure 3. Illustration of prerequisite (in bold) and main requirement

in a text

In that clause, the prerequisite part means that the main

requirement only applies to internal combustion

engines and boiler plants that satisfy the condition of

“operating on heavy fuel”. If there exist internal

Object category

hasCategory(ObjectID, Category)
Object relation
objectRelation(ObjectID1, Relation, ObjectID2)
objectRelation(ObjectID, Relation)
Object value

hasValue(ObjectID, Number)

Data

Internal combustion engine operates on heavy fuel

Boiler plant operates on heavy fuel

Facts
hasCategory(id1_ice, internal_combustion_engine).
hasCategory(id1_bp, boiler_plant).
hasCategory(id1_hf, heavy_fuel).
objectRelation(id1_ice, operates_on, id1_hf).
objectRelation(id1_bp, operates_on, id1_hf).

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 347

combustion engines and boiler plants that operate on

heavy fuel, the main requirement has to be satisfied so

that internal combustion engines and boiler plants are

deemed to comply with the said clause, i.e. they must

be able to be temporarily operated on fuel which does

not need to be preheated.

Inspired by the approach proposed by Lee et al. [21] and

Ramanauskaitė et al. [22] we break each part even

further into atomic statements. We defined a more

general structure of this atomic statement to be a simple

statement that follows S – P – O (Subject – Predicate –

Object) akin to knowledge graph triples. With this

definition, structures such as S – V – O (Subject – Verb

– Object), S – V (Subject – Verb), or S – V – C (Subject

– Verb – Complement) can be accommodated, which

will be explained later.

Following the pattern in the clause, the main

requirement and prerequisite may share an object in S

or O position. Alternatively, they may have their

separate sets of objects. Figure 4 illustrates this pattern.

Figure 4.Illustration of atomic statements. Dashed thick border

indicates objects in S position shared by main requirement and

prerequisite. P index is used to indicate words belonging to

prerequisite, while words with M index belongs to main

requirement. The same words are assigned to the same index

Another pattern that we consider is the logical relations

between objects and statements, marked by the use of

connectives. There are three types of connectives used

in the clauses, namely and, or, and/or. The explanation

for each relation is given below:

And: this relation means that all the objects in the

statement must exist, or all the statements must be true

for the clause to be evaluated to comply.

Or: this relation conveys the meaning of exclusive or

(XOR) in logics, i.e. when used to connect objects, only

one object needs to exist for the clause to be evaluated

as comply. Similarly, when used as a connector between

statements, only one statement needs to be true. The

objects and statements connected by or cannot be

simultaneously true.

And/or: this relation between objects means that one or

more objects need to exist and the statements involving

the objects that exist must all evaluate to true for the

overall clause to be evaluated as comply.

The following examples illustrate the relations further:

− Generator and main switchboard must be installed

in main engine room

This clause means that both generator and main

switchboard must be provided and both of them

must be installed in main engine room.

− Generator must be installed in main engine room or

particular auxiliary machinery room

This clause means that generator must be installed in

either main engine room or particular auxiliary

machinery room. It cannot be installed in both

rooms.

− Emergency switchboard must be installed in the

room containing emergency generator and/or

emergency battery

This clause means that emergency generator,

emergency battery or both of them must be

provided. Whichever is provided must be installed

in the same room with emergency switchboard.

After identifying the patterns in the clause, we define

the logic rules to represent the clause based on the

identified pattern. First, we take a look at the general

structure of the clause which contains prerequisite and

main requirement. We define the compliance value of a

clause as true if the requirements in prerequisite and

main requirement are fulfilled. We also define the

compliance value to be true if the prerequisite is not

fulfilled. The reason for this choice is twofold. The first

one is that since there is no other conclusion in logic

other than true or false, one of the two needs to be

chosen to indicate that the clause is not applicable. The

second is that when the prerequisite is not fulfilled, it is

generally considered still complied by reviewer, thus

the compliance value will be defined as true when the

prerequisite is not fulfilled. Based on the

aforementioned considerations, the main rule is defined

in Table 3.

Table 3. Main rule

Main rule

satisfiesRegulation(RuleID) :-
 applicableRule(RuleID, PrereqObjects), !,
 satisfiesMainRequirement(RuleID, PrereqObjects).
satisfiesRegulation(RuleID).

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 348

In this rule, a RuleID is assigned to each clause and

satisfiesRegulation takes RuleID as an argument. If a

clause with RuleID of r1 is complied then

satisfiesRegulation(r1) will evaluate to true.

Furthermore, satisfiesRegulation will evaluates to true

when both predicates applicableRule and

satisfiesMainRequirement evaluates to true. When

applicableRule evaluates to false, alternative rule of

satisfiesRegulation will be evaluated which will be

true, mimicking the definition previously mentioned.

Next, the rules to check applicability and fulfillment of

main requirement is defined. These rules have the

predicates applicableRule and

satisfiesMainRequirement as their head, respectively.

The rules are presented in Table 4.

Table 4. Rule for applicability and fulfillment

Rule to check applicability

applicableRule(RuleID, PrereqObject) :-
processPrerequisite(RuleID, PrerequisiteStatement, Acc,
PrereqObjects).

Rule to check main requirement fulfillment
satisfiesMainRequirement(RuleID, PrereqObjects):-

resolveRequirement(RuleID, MainRequirementStatement,
PrereqObjects, LinkedObject).

Both applicableRule and satisfiesMainRequirement
have arity of 2 which consists of the RuleID and a

variable called PrereqObjects. This variable will be

unified in applicableRule with objects that satisfy the

requirements. The same variable is also used as

argument in satisfiesMainRequirement to represent

objects shared between prerequisite and main

requirement. Other variables used for this

representation are Acc and LinkedObject. Acc is used to

collect objects in prerequisite that satisfy the

requirements. After all the objects are checked, it will

be unified with PrereqObjects. LinkedObject is in the

form of a list of objects in prerequisite that will also be

used in main requirements, hence the name. Only

objects that are both present in PrereqObjects and

LinkedObject will be used to check the fulfillment of

main requirement. In a condition where there is no

common object between main requirement and

prerequisite, LinkedObject will be an empty list.

The atomic statements that formed the prerequisite and

main requirement are represented in variables. They are

named PrerequisiteStatement and

MainRequirementStatement respectively. Those

variables are List of tuples and triples as explained in

Table 5.

Main requirement statements
[

(Obj1, Relation, Obj2),
...

]

Linked objects
[LObj1, LObj2, ..., LObjn]

PObj is prerequisite object in the form of list of tuples.

The list of tuples is in turn in the form of [(Fx, Cat)]. Fx

is a variable, where x is a running number and Cat is an

atom that indicates the category of the object.

The triple (Obj1, Relation, Obj2) is a representation of

atomic statement in triple form. As explained before,

the atomic statement follows the structure of S – P – O.

Consequently, the predicate (P) is not always a verb and

the object (O) may not be a noun.

Obj1 is the first object of the statement. It fills the

position of Subject (S) in the S – P – O triple. Only list

of tuple in the form of [(Fx, Cat)] is allowed as Obj1. If

the same object is referred multiple times in the text,

they will have same variable.

Relation between object in the statement fills the

position of Predicate (P) in the S – P – O triple. As

mentioned before, Relation is not always a verb and

modals in the predicate is omitted. We define the

Relation to be one of the several possible form. The first

one is an atom that represents the relation between

objects e.g. installedIn, equippedWith, protects. Next,

the Relation can be in the form of mathematical

comparison symbols e.g. more than (>), equals to (==),

not equal to (<>). Last, the Relation can take the form

of special relation named comp.

Table 5. Data structure (prerequisite object is in bold, statements are

in italic, and objects are marked with underline)

Prerequisite statements

[
 (PObj, [
 (Obj1, Relation, Obj2),
 ...
]),
 ...
]

Mathematical comparison symbols are used to

represent comparison between objects and numbers. On

the other hand, the special relation comp is used to

represent comparison between objects. Comparison

between objects is handled using a special rule called

comparison. The rule is defined in Table 6.

Table 6. Comparison rule

Comparison rule

comparison(RuleID, Value1, Value2) :-

 Value1 ? Num  Value2

Note:

Num denotes a number

? denotes comparison (<, >, >=, <=, ==, <>)

 denotes mathematical operator (addition, multiplication,

divsion)

Obj2 is the second object of the statement. This

component fills the position of Object (O) in the S – P

– O triple. Several types of data objects are allowed for

Obj2. The first one is list of tuple in the form of [(Fx,
Cat)]. Special atom named no_object is also allowed,

which is used when the original statement in the clause

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 349

follows S – V structure. Lastly, numbers are also

allowed to be in the position of Obj2.

LObj is the list-linked object. It is used to indicate shared

objects between the prerequisite and the main

requirement. Only tuple in the form of (Fx, Cat) is

allowed as LObj. Objects in the linked object list will

have the same variable as an object in the main

requirement statement if they are of the same category.

Using the design shown in Table 3 through Table 5, we

show another example of logic rules representation. We

use our running example of the clause to demonstrate

how a clause is represented in logic rules. We assign the

RuleID of r1 for this representation. This example can

be found in Table 7.

Table 7. Rule for applicability and fulfilment

Clause

If internal combustion engines and boiler plants operating on

heavy fuel, provision is to be made to ensure that internal

combustion engines and boiler plants can be operated

temporarily on fuel which does not need to be preheated

Representation
satisfiesRegulation(r1) :-
 applicableRule(r1, PrereqObjects), !,
 satisfiesMainRequirement(r1, PrereqObjects).
satisfiesRegulation(r1).
applicableRule(r1, PrereqObject) :-

processPrerequisite(r1, [
([(P1, internal_combustion_engine)], [

([(P1, internal_combustion_engine)], operates_on,
[(P2, heavy_fuel)])

]),
([(P1, boiler_plant)], [

([(P1, boiler_plant)], operates_on, [(P2, heavy_fuel)])
])

], Acc, PrereqObjects).
satisfiesMainRequirement(r1, PrereqObjects):-

resolveRequirement(r1, [
([(F1, provision)], made, no_object),
([(F1, provision)], ensure, no_object),
([(F2, internal_combustion_engine)],
operates_temporarily_on, [(F2, fuel)]),
([(F3, boiler_plant)], operates_temporarily_on, [(F2,
fuel)]),
([(F2, fuel)], need_not_to_be_preheated, no_object)

], PrereqObjects, [(F2, internal_combustion_engine), (F3,
boiler_plant)]).

After defining rules related to the prerequisite and main

requirement, as well as the facts, we define the way to

represent logical relations in the clause. And relation is

represented as triples in the same List in the prerequisite

or main requirement statement. Or relation is

represented using alternative rules, so multiple

applicableRule or satisfiesMainRequirement
predicates are used to represent it. On the other hand,

And/Or relation is represented as multiple (Fx, Cat)
tuples in the Obj1 or Obj2 position. The examples of

such representation are presented in Tables 8 through

10.

The rules to check the applicability and fulfillment of

the main requirement have processPrerequisite and

resolveRequirement as the head, respectively. In

general, those rules involve recursively evaluating the

list of triples which represent atomic statements. To find

suitable objects, hasCategory facts are searched to find

objects whose Category matched with the value of Cat
in [(Fx, Cat)] tuple. After objects with matched category

are found, next the ObjectID is unified with Fx. Moving

on to the relation between objects, objectRelation facts

are then searched to determine whether there is a

relation between objects that matched the one stated in

the triples. When comparison is involved, the value of

the object is first obtained by searching through the

hasValue facts and then the value is used to evaluate the

predicate comparison.

For processPrerequisite, the PObj part of the tuple will

be appended to the variable Acc if the list of triples is

evaluated to true. It will then consequently unified with

PrereqObjects. In resolveRequirement the elements of

PrereqObjects will be unified with elements of

LinkedObject whose category is the same and then used

to evaluate the list of triples recursively.

Table 8. And relation example

Original text

Control panel and switchboard must be installed in control

room

Representation
satisfiesMainRequirement(r1, PrereqObjects):-
 resolveRequirement(r1, [
 ([(F1, control_panel)], installed_in, [(F2, control_room)]),
 ([(F1, switchboard)], installed_in, [(F2, control_room)])
], PrereqObjects, LinkedObj).

Table 9. Or relation example

Table 10. And/Or relation example

2.6. Prompt Engineering to Generate Logic Rules

After designing the logic rules to represent clauses of

technical standards, we define the prompt that is given

to LLM to obtain such representation from the text. We

take inspiration from research conducted by Carta [17],

Original text

Generator must be installed in engine room or machinery room

Representation
satisfiesMainRequirement(r1, PrereqObjects):-
 resolveRequirement(r1, [
 ([(F1, generator)], installed_in, [(F2, engine_room)]),
], PrereqObjects, LinkedObj).

satisfiesMainRequirement(r1, PrereqObjects):-
 resolveRequirement(r1, [
 ([(F1, generator)], installed_in, [(F2, machinery_room)]),
], PrereqObjects, LinkedObj).

Original text

Generator and/or battery must be provided

Representation
satisfiesMainRequirement(r1, PrereqObjects):-
 resolveRequirement(r1, [
 ([(F1, generator), (F2, battery)], provided, no_object)
], PrereqObjects, LinkedObj).

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 350

which uses zero-shot prompting in a pipeline manner.

We modify the pipeline and incorporate few-shot

prompting [23] and chain-of-thought [24] to analyze the

sentence structure in a clause and obtain the logic rules.

For the remainder of the paper, this method will be

called the pipeline method.

Considering the ability of LLM to generate code to

solve the problem given in the prompt, we explored

another prompting method to obtain the logic rules

representation. In this method, we prompt the LLM to

obtain logic rules directly from text. To steer it to use

the logic rules we have previously defined, we use few-

shot prompting and give it several examples. We call

this method a code generation method.

The pipeline method generally consists of the analysis

of sentence structure and extracting its component to

obtain logic rules. The LLM is given several tasks in a

pipeline to obtain logic rules from text. The tasks given

to LLM can be seen in Figure 5.

Figure 5. LLM Task in Pipeline Manner

First, the LLM is tasked to rewrite the text of the

technical standard. It is done by prompting LLM to do

coreference resolution to the text so that all synonyms

and pronouns are changed into the object they are

referring to. In addition, given the text of the technical

standards and its context, LLM is also tasked to rewrite

the text to incorporate the context.

Next task is identification of main requirement and

prerequisite. Identification is done while considering

whether the prerequisite is explicit and whether

expression of permission is present. The prompt given

to LLM can be summarized with the flowchart shown

in Figure 6.

Figure 6. Flowchart of Main Requirement and Prerequisite

Identification Process

After main requirement and prerequisite are identified,

LLM is tasked to identify the objects of each of those

parts. The objects are not necessarily in grammatical

Object (O) position, but they are always a noun.

Coordinating conjunction between objects is left as it is.

LLM is also given prompt to break down object in the

form of participial phrase or noun phrase to S – P – O

triples. In addition, the object that implies the meaning

of possession is also broken down to S – P – O triples.

For example, the phrase “rated current of motor” or

“motor’s rated current” is converted into “motor – has

– rated current”.

Next, a prompt is given to LLM to extract atomic

statements from prerequisite and main requirement.

Generally, it is done by breaking down the sentences

into S – P – O triples where the S and O must be singular

noun and the P must conform to the singular form of S

and O. Some considerations have to be taken,

particularly regarding comparison. Predicates that

contain comparison between object and number must be

converted into mathematical comparison symbol, for

example phrases like “more than” and “not less than” is

converted into “>” and “>=”. On the other hand,

comparison between objects is converted so that the

comparison uses special relation comp and then the

actual comparison is separated from the text. For

example, the comparison in the sentence “The

protection is not to be less than 150% the rated current

of the motor” is converted into “protection – comp –

rated current” while the actual comparison “protection

– >= – 150% * rated current” is placed separately from

the rest of the text. This extraction can be summarized

in the flowchart shown in Figure 7.

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 351

Figure 7. Flowchart of Atomic Statements Extraction Process

Another consideration is related to the logical relation

in the text. To handle this logical relation, the atomic

statements are first grouped based on the part of the text

they originated. Indications are also given to show the

logical relation applied to them. For example, the text

“Electrical installation must be provided with a device

to protect against residual current or a device to monitor

ground fault” is extracted into the following atomic

statements:

(or_1) electrical installation – provided with – device

(or_1) device – protect against – residual current

(or_2) electrical installation – provided with – device

(or_2) device – monitor – ground fault

The last part of the pipeline deals with conditioning the

atomic statements so that it will be easier to convert into

logic rules as designed. First, the identified atomic

statements are collected in JavaScript Object Notation

(JSON) format. The structure of the JSON is presented

in Table 11.

The value of type is a string that indicates the logic

relation in the original text i.e. “AND”, “OR”, or

“AND/OR”. The objects related to the atomic

statements are marked with the key objects in the form

of array of strings such as [“motor”, “generator”], or

[“panel”], while the atomic statements are arranged as

array of strings in the form of [“object1 – relation –
object2”] and marked with the key statements. The

key calculation marks the comparison between object

in the form of ”Value1 ? Num  Value2” as explained in

Table 6.

Next, the objects are converted into [(Fx, Cat)] tuples.

The object will be used as the category, while the

variable is assigned by LLM. We define the naming of

convention of the variables where Px is used as

variables related to prerequisite and Fy is used as

variables related to main requirement while x and y are

running numbers. As previously explained, objects that

are referred multiple times in the text will have the same

variable.

Table 11. JSON structure

JSON

{
 "prerequisite": {
 "type": type,
 "pair": [
 {
 "objects": objects,
 "statements": statements
 }
],
 "calculation": calc
 },
 "main_requirement": {
 "type": type,
 "pair": [
 {
 "objects": objects,
 "statements": statements
 }
],
 "calculation": calc
 }
}

The completed JSON is then processed using a Python

script to be converted to proper logic rules. A

postprocessing process is also applied to the resulting

logic rules to ensure that the rules can be executed

without error. The postprocessing contains converting

dashes (-) to underscores (_) and changing capital

letters to lowercase.

The code generation method makes use of the LLM

ability to understand and generate code [25] [26]. For

this method, we utilize few-shot prompting to directly

convert text to logic rules. We use few-shot prompting

to make sure that the logic rules produced by LLM

follow the rules and data structures we have defined

previously.

We prepare several pairs of text and the resulting logic

rules as examples for the LLM. The pairs are selected

to present LLM a variety of clause structures and their

corresponding logic rules representation. The examples

contain clauses with and without prerequisites, a variety

of logical relations and clauses containing comparison,

whether it is between objects or between objects and

number.

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 352

2.7. Data and Evaluation Scenarios

We use 30 clauses from Rules for Electrical

Installations (Pt.1, Vol.IV) [27] published by BKI. The

selected clause contains no table, figure, equation or

definition. We assign RuleID of r1 through r30 for the

clauses. Some characteristics of the clauses are

presented in Table 12.

Table 12. Characteristics of clauses used

Criteria # of clause Clause

With prerequisite 20 r1, r2, r3, r4, r6, r9,

r10, r11, r13, r14,

r15, r18, r20, r21,

r22, r23, r24, r25,

r26, r27, r29

No prerequisite 10 r5, r7, r8, r12, r16,

r17, r19, r21, r28,

r30

With “and” relation 26 r2, r3, r4, r5, r6, r7,

r8, r10, r11, r12,

r13, r14, r15, r16,

r17, r19, r20, r21,

r22, r23, r24, r25,

r27, r28, r29, r30

With “or” relation 5 r1, r2, r3, r10, r27

With “and/or” relation 3 r9, r10, r26

With comparison 6 r5, r7, r8, r12, r28,

r30

The facts used to evaluate the logic are taken from real

design documents of three (3) ships of the type of tug

boat. The designs of these ships have already been

judged as complying with the technical standards by the

reviewer. We then obtain the facts following the

previously explained format. We also use synthetic data

to present facts which are then judged by reviewers as

not complying and not applicable. We label the data

from the three real ships as originating from ship 1

through 3, and the synthetic data is given labels ship 4

and ship 5. Some examples of the facts obtained are

presented in Table 13.

The prompt and the logic rules are run on a laptop with

an Intel Core i7 8 CPU @2.9GHz processor and 16GB

RAM. We use GPT4o LLM, which is accessed using an

application programming interface (API) provided by

Openai with a temperature setting of zero (0). The code

used to access the API is written in Python using the

LangChain library. The logic rules are written in Prolog

while the execution is done using SWI-Prolog.

Table 13. Examples of facts

Data

Motor has power rating of 4000 W

Motor is protected against short circuit

Motor is protected against overload

Table 13. Examples of facts - continued

Facts
hasCategory(id94a_mot, motor).
hasCategory(id95a_pwr, power_rating).
objectRelation(id94a_mot, has, id95a_pwr).
objectRelation(id94a_mot, protected_against, id72_shc).
objectRelation(id94a_mot, protected_against, id73_ovl).
hasValue(id95a_pwr, 4000).

Two types of evaluation are done in this research. The

first is done to the design itself to evaluate how well the

logic rules that we design are able to represent the

technical standards clauses. The second one is done

according to the logic rules obtained using LLM to

evaluate how well the output of LLM is able to

represent the technical standards clause.

We argue that the logic rules representation obtained

using LLM cannot be evaluated using its similarity with

the logic rules obtained manually. The clause of

technical standards can be represented as logic rules in

many ways; thus, if the logic rules are not similar, we

cannot dismiss them outright as false representations.

Hence, for the evaluation, we measure the faithfulness

of the representation. We define faithful representation

as one which will give the same compliance decision as

the reviewer's judgement given the same facts. In both

evaluations, various facts are provided. We seek

judgment from reviewers on whether the given fact will

produce a compliance decision of true, false or not

applicable. We then compare it with the compliance

decision as produced by the logic rules.

To do the first evaluation, we make the logic rules

representation manually. For the second evaluation, the

prompt from each method is run 5 times. The resulting

logic rules are then run against the provided facts.

Since there is no metric to measure faithfulness, we

approximate it by posing the evaluation as an evaluation

of multi-class classification. We treat each compliance

decision as a class and then define the true value as the

compliance decision based on reviewer judgement, and

the predicted value as the compliance decision

produced by the logic rules. Afterwards, we calculate

the accuracy score as well as macro-averaged precision

and recall.

3. Results and Discussions

3.1 Results

As explained before, first, we make a logic rules

representation of the technical standards manually. We

execute it against the facts provided and record the

result as shown in Table 14. This table groups the

clauses in comply, not comply, and not applicable

groups based on ground truth and results from

executing logic rules. We find that the representations

produce exactly the same compliance decision as

reviewer judgement. We also present some examples of

the manually obtained logic rules in Table 15.

Logic rules obtained by using LLM are executed with

the same provided facts. We present a sample of results

of logic rules execution in Table 16, while the overall

result measured as accuracy, precision and recall score

is presented in Table 17. It can be seen that logic rules

obtained using the pipeline method have better

accuracy, precision and recall than those obtained using

the code generation method. We can say then, between

the two methods utilized, logic rules obtained using the

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 353

pipeline method can represent the technical standards

more faithfully.

Table 14. Result of executing the manually obtained logic rules

Ship Compliance Ground Truth Result from

logic rules

Ship 1 Comply r1 - r6, r8-r30 r1 - r6, r8-r30

 Not comply r7 r7

 N/A - -

Ship 2 Comply r1 - r7, r9-r30 r1 - r7, r9-r30

 Not comply - -

 N/A r8 r8

Ship 3 Comply r1 - r7, r9-r30 r1 - r7, r9-r30

 Not comply - -

 N/A r8 r8

Ship 4 Comply r3, r4, r6, r7,

r10, r13, r15,

r16, r17, r18,

r24, r26, r27

r3, r4, r6, r7,

r10, r13, r15,

r16, r17, r18,

r24, r26, r27

 Not comply r1, r2, r5, r9,

r11, r12, r14,

r19, r20-23, r25,

r28-r30

r1, r2, r5, r9,

r11, r12, r14,

r19, r20-23, r25,

r28-r30

 N/A r8 r8

Ship 5 Comply r1-r4, r6, r9, r10,

r11, r13-r15,

r18, r20, r22-

r25, r26, r27,

r29

r1-r4, r6, r9, r10,

r11, r13-r15,

r18, r20, r22-

r25, r26, r27,

r29

 Not comply - -

 N/A r5, r7, r8, r12,

r16, r17, r19,

r21, r28, r30

r5, r7, r8, r12,

r16, r17, r19,

r21, r28, r30

Table 15. Examples of manually obtained logic rules

Original text

Main and emergency switchboards shall be fitted with

insulation handrails or handles.

Rules
applicableRule(r27, PrereqObjects):-
 processPrerequisite(r27, [], [], PrereqObjects).
satisfiesMainRequirement(r27, PrereqObjects):-
 resolveRequirement(r27, [
 ([(F1, main_switchboard)], fitted_with, [(F2,
insulation_handrail)]),
 ([(F1, emergency_switchboard)], fitted_with, [(F2,
insulation_handrail)])
], PrereqObjects, []).
satisfiesMainRequirement(r27, PrereqObjects):-
 resolveRequirement(r27, [
 ([(F1, main_switchboard)], fitted_with, [(F2,
insulation_handle)]),
 ([(F1, emergency_switchboard)], fitted_with, [(F2,
insulation_handle)])
], PrereqObjects, []).

Original text

Motors with a power rating of more than 1kW shall be

individually protected against overloads and short-circuits

Rules
applicableRule(r28, PrereqObjects):-
 processPrerequisite(r28, [
 ([(P1, motor)],[
 ([(P1, motor)], has, [(P2, power_rating)]),
 ([(P2, power_rating)], >=, 1000)
])
], [], PrereqObjects),
 checkNotEmpty(PrereqObjects).

Table 15. Examples of manually obtained logic rules - continued

Rules
satisfiesMainRequirement(r28, PrereqObjects):-
 resolveRequirement(r28, [
 ([(F1, motor)], protected_against, [(F2, overload)]),
 ([(F1, motor)], protected_against, [(F2, short_circuit)])
], PrereqObjects, [(F1, motor)]).

Table 16. Result of executing the logic rules obtained from LLM

Ship Compliance Ground

Truth

Result from logic rules

Pipeline Code

Generation

Ship 1 Comply r1-r6, r8-

r30

r1, r3, r4,

r6, r9,

r11-r15,

r18-r25

r4, r5, r18,

r20, r22,

r23, r25,

r28

 Not comply r7 r2, r5, r7,

r8, r10,

r16, r17,

r26, r27,

r30

r1, r3, r6,

r8-r11, r13-

r15, r26,

r27

 N/A - r28, r29 r2, r7, r12,

r16, r17,

r19, r21,

r24, r29,

r30

Ship 2 Comply r1-r7, r9-

r30

r1, r3, r4,

r6, r9,

r11-r15,

r18-r25

r4, r5, r18,

r20, r22,

r23, r25,

r28

 Not comply - r2, r5, r7,

r8, r10,

r16, r17,

r26, r27,

r30

r1, r3, r6,

r8-r11, r13-

r15, r26,

r27

 N/A r8 r28, r29 r2, r7, r12,

r16, r17,

r19, r21,

r24, r29,

r30

Ship 3 Comply r1 - r7,

r9-r30

r1, r3, r4,

r6, r9,

r11-r15,

r18-r25

r4, r5, r18,

r20, r22,

r23, r25,

r28

 Not comply - r2, r5, r7,

r8, r10,

r16, r17,

r26, r27,

r30

r1, r3, r6,

r8-r11, r13-

r15, r26,

r27

 N/A r8 r28, r29 r2, r7, r12,

r16, r17,

r19, r21,

r24, r29,

r30

Table 16. Result of executing the logic rules obtained from LLM -

continued

Ship Compliance Ground

Truth

Result from logic rules

Pipeline Code

Generation

Ship 4 Comply r3, r4, r6,

r7, r10,

r13, r15,

r16, r17,

r18, r24,

r26, r27

r3, r4, r6,

r13, r14,

r15, r18,

r24

r4, r18

 Not comply r1, r2, r5,

r9, r11,

r12, r14,

r19, r20-

23, r25,

r28-r30

r1, r2, r5,

r7-r12,

r16, r17,

r19-r23,

r26, r27

r1, r3, r5,

r6, r8-r11,

r13-r15,

r20, r22,

r23, r26-r28

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 354

Ship Compliance Ground

Truth

Result from logic rules

Pipeline Code

Generation

 N/A r8 r25, r28-

r30

r2, r7, r12,

r16, r17,

r19, r21,

r24, r25,

r29, r30

Ship 5 Comply r1-r4, r6,

r9, r10,

r11, r13-

r15, r18,

r20, r22-

r25, r26,

r27, r29

r1, r3, r4,

r6, r9,

r11, r13,

r14, r15,

r18, r20,

r22-r25

r4, r5, r18,

r20, r22,

r23, r25

 Not comply - r2, r5,

r10, r16,

r17, r19,

r26, r27

r1, r3, r6,

r9-r11, r13-

r15, r26,

r27

 N/A r5, r7, r8,

r12, r16,

r17, r19,

r21, r28,

r30

r7, r8,

r12, r21,

r28-r30

r2, r7, r8,

r12, r16,

r17, r19,

r21, r24,

r28-r30

Table 17. Evaluation of logic rules obtained using LLM

3.2 Discussions

Evaluation of logic rules obtained manually shows that

the logic rules designed in this research have already

been able to represent the 30 clauses used. Since the

pattern used as the basis of logic rules design is general

enough, we argue that this design can be applied to

other clauses in the technical standards. The exception

is on the clause that contains tables, figures and

equations. We will try to address these limitations in

future works.

To analyze the performance of the representation

obtained using LLM, we compare the logic rules

outputted by LLM and the logic rules made manually.

As explained before, we avoid evaluating the similarity

of the logic rules since different logic rules do not

necessarily mean that the rules are incorrect. Instead, we

define several fault categories that may be present in the

logic rules obtained by LLM.

All the occurrence of the fault is then presented in the

bar chart in Figure 8. For each of the 5 runs of each

method, we count all the occurrences of the following

fault. The first fault is an incorrect prerequisite that is

defined as a condition in which LLM produce a

prerequisite where there is none or vice versa. The

second fault, incorrect object representation, is defined

as a condition where objects are not broken down into

simpler objects or combined with another object.

Incorrect number of statements is the third fault where

LLM leave out some atomic statements or even makes

some that do not exist in the original text. Fault number

four, incorrect logical relation, is when the

representation of the logical relation does not match

what is written in the text, e.g. making an or-relation

representation when the relation in the text is an and-

relation and so on. Next, incorrect comparison is the

condition where the comparison in the text is not

represented using the format given. Last, mis-ordered

relation is the condition where the order of object in a

relation is incorrect. This kind fault happened, for

example, when the text “rated power of motor” is

represented as “rated power – has – motor.”

Figure 8. Flowchart of Atomic Statements Extraction Process

Examples of the occurrence of errors in the rules are

given in Table 18. In that table, we present the original

text of the clause, the representation that is obtained

manually, and the representation generated from LLM

(one for each method). We can see that the rules

generated using the pipeline method cannot extract all

atomic statements, hence the occurrence of the

“incorrect number of statements” fault. On the other

hand, the one generated from the code generation

method has an object that is a combination of two

conditions, estuary trading and navigation close to

ports, hence the occurrence of the “incorrect

representation of object” fault.

We also note the occurrence of faults in each clause.

From that data, we found that there are several clauses

represented perfectly. i.e. possess zero occurrence of

error. We present the summary of such clauses in Table

19.

It can be seen in Table 14 that in the pipeline method,

there are 7 clauses without the occurrence of error. On

the other hand, in the code generation method, there are

3 clauses without the occurrence of error. This supports

the results in Table 17, where logic rules produced by

the pipeline method have better accuracy, precision and

recall scores.

We made some observations regarding the error that

occurred in the logic rules. The first one is related to the

most frequently occurring error, that is, Fault 1 or

incorrect prerequisite. From Figure 8, we can see that

53

22

29

21 22

4

70

36

24

41

10

1

0

10

20

30

40

50

60

70

80

Pipeline Method Code Generation Method

Method Accuracy Precision Recall

Pipeline 0.57 0.49 0.62

Code

Generation

0.33 0.43 0.5

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 355

this type of error occurred 53 times in logic rules

produced by the pipeline method and 70 times in the

ones produced by code generation. We argue that this

error is the most prevalent because many of the

prerequisites in the clause are implicit. The implicit

nature of the prerequisites makes them

indistinguishable from other parts of the clause. Based

on this fact, the prompt given to LLM tends to rely on

LLM’s internal knowledge to identify the prerequisite.

This leads to many occurrences of this category of error,

and in turn, also affects the overall precision and recall

score.

Table 18. Comparison of logic rules

Original text

The power demand has to be determined for the following

operating conditions:

— navigation at sea

— estuary trading and navigation close to port

— emergency power supply

Rules constructed manually
applicableRule(r14, PrereqObjects):-
 processPrerequisite(r14, [], [], PrereqObjects).

satisfiesMainRequirement(r14, PrereqObjects):-

resolveRequirement(r14, [
([(F1, power_demand)], determined_for, [(F2,
navigation_at_sea)]),
([(F1, power_demand)], determined_for, [(F3,
estuary_trading)]),
([(F1, power_demand)], determined_for, [(F2,
navigation_close_to_port)]),
([(F1, power_demand)], determined_for, [(F2,
emergency_power_supply)])

], PrereqObjects, []).

Rules generated by pipeline method
applicableRule(r14, PrereqObjects):-

processPrerequisite(r14, [], [], PrereqObjects).
satisfiesMainRequirement(r14, PrereqObjects):-

resolveRequirement(r14, [
([(F1, power_demand)], has_to_be, [(F2, determined)])

], PrereqObjects, []).

Rules generated by code generation method

applicableRule(r14, PrereqObjects):-
 processPrerequisite(r14, [], [], PrereqObjects).
satisfiesMainRequirement(r14, PrereqObjects):-

resolveRequirement(r14, [
([(F1, power_demand)], determined_for, [(F2,
operating_condition)]),
([(F2, operating_condition)], includes, [(F3,
navigation_at_sea)]),
([(F2, operating_condition)], includes, [(F4,
estuary_trading_navigation_close_to_port)]),
([(F2, operating_condition)], includes, [(F5,
emergency_power_supply)])

], PrereqObjects, []).

Table 19. Evaluation of logic rules obtained using LLM

Method # of rules with

zero occurrence of

error

Clauses

Pipeline 7 r1, r9, r11, r12, r18,

r20, r22

Code

Generation

3 r5, r22, r28

Another significant observation is the occurrence of the

“incorrect logical relation” fault. This type of fault

occurs more frequently, twice the occurrence in the

logic rules obtained using code generation method. This

fact indicates that pipeline method is more capable of

producing representation of logical relation than code

generation method. We argue that this happens because

the prompt to obtain logical relation representation in

the pipeline method is more detailed. It may result in

more data that is seen by LLM and thus making it easier

to predict logical relation representation.

We note interesting facts regarding the occurrence of

incorrect comparison faults. Contrary to other types of

faults, this type occurs less frequently in the logic rules

obtained from the code generation method. We argue

that this happens because of the training data of GPT

itself, which includes code written in various

programming languages. When presented with a task

related to programming, GPT will use patterns in the

programming languages it has learned. Those

programming languages possess similarity with Prolog

in their comparison-related syntax. Thus, posing the

task of obtaining logic rules representation as a

programming task will produce better results when

comparison is involved.

4. Conclusions

This research presents the design of logic rules that can

be used to represent technical standards as an effort to

realize automatic compliance checking. Two prompting

methods that can be used to obtain logic rules from text

using LLM are also presented. The evaluation suggests

that the design has already been able to represent 30

clauses of technical standards and is potentially able to

represent other clauses as well. Evaluation done to the

logic rules obtained using LLM suggests that the

pipeline method can extract a more faithful

representation. Future works should explore the method

of extracting facts from design documents to realize an

end-to-end system of automatic compliance checking.

It should also explore the effect of various prompting

techniques and LLMs in improving the faithfulness of

the representation. Last, future works should explore

representation that can accommodate tables, equations

and images.

References

[1] “Rules for Classification: Ships - Part 1 General Regulations

- Chapter 1 General Regulations,” Jul. 2023
[2] L. Jiang, J. Shi, and C. Wang, “Multi-ontology fusion and rule

development to facilitate automated code compliance

checking using BIM and rule-based reasoning,” Advanced

Engineering Informatics, vol. 51, Jan. 2022, doi:

10.1016/j.aei.2021.101449.
[3] W3C SPARQL Working Group, “SPARQL 1.1 Overview.”

Accessed: Jun. 08, 2024. [Online]. Available:

https://www.w3.org/TR/2013/REC-sparql11-overview-

20130321/

[4] P. Patlakas, I. Christovasilis, L. Riparbelli, F. K. Cheung, and

E. Vakaj, “Semantic web-based automated compliance

checking with integration of Finite Element analysis,”

 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 356

Advanced Engineering Informatics, vol. 61, Aug. 2024, doi:

10.1016/j.aei.2024.102448.

[5] X. Zhu, H. Li, and T. Su, “Autonomous complex knowledge

mining and graph representation through natural language

processing and transfer learning,” Autom Constr, vol. 155,

Nov. 2023, doi: 10.1016/j.autcon.2023.105074.

[6] M. Yang et al., “Semi-automatic representation of design

code based on knowledge graph for automated compliance

checking,” Comput Ind, vol. 150, Sep. 2023, doi:

10.1016/j.compind.2023.103945.

[7] I. Fitkau and T. Hartmann, “An ontology-based approach of

automatic compliance checking for structural fire safety

requirements,” Advanced Engineering Informatics, vol. 59,

Jan. 2024, doi: 10.1016/j.aei.2023.102314.

[8] D. Guo, E. Onstein, and A. D. La Rosa, “A Semantic

Approach for Automated Rule Compliance Checking in

Construction Industry,” IEEE Access, vol. 9, pp. 129648–

129660, 2021, doi: 10.1109/ACCESS.2021.3108226.

[9] X. Zhao, L. Huang, Z. Sun, X. Fan, and M. Zhang,

“Compliance Checking on Topological Spatial Relationships

of Building Elements Based on Building Information Models

and Ontology,” Sustainability (Switzerland), vol. 15, no. 14,

Jul. 2023, doi: 10.3390/su151410901.

[10] X. Xue and J. Zhang, “Regulatory information transformation

ruleset expansion to support automated building code

compliance checking,” Autom Constr, vol. 138, Jun. 2022,

doi: 10.1016/j.autcon.2022.104230.

[11] Q. Ren et al., “Automatic quality compliance checking in

concrete dam construction: Integrating rule syntax parsing

and semantic distance,” Advanced Engineering Informatics,

vol. 60, Apr. 2024, doi: 10.1016/j.aei.2024.102409.

[12] S. Liu, B. Zhao, R. Guo, G. Meng, F. Zhang, and M. Zhang,

“Have you been properly notified? automatic compliance

analysis of privacy policy text with GDPR article 13,” in The

Web Conference 2021 - Proceedings of the World Wide Web

Conference, WWW 2021, Association for Computing

Machinery, Inc, Apr. 2021, pp. 2154–2164. doi:

10.1145/3442381.3450022.

[13] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I.

Language, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” in Proceedings

of NAACL-HLT 2019, 2019, pp. 4171–4186. doi:

10.18653/v1/N19-1423.

[14] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,

“Improving Language Understanding by Generative Pre-

Training,” 2018, Accessed: Jan. 06, 2025. [Online].

Available: https://cdn.openai.com/research-covers/language-

unsupervised/language_understanding_paper.pdf

[15] H. Touvron et al., “LLaMA: Open and Efficient Foundation

Language Models,” 2023, doi:

https://doi.org/10.48550/arXiv.2302.13971.

[16] A. Chowdhery et al., “PaLM: Scaling Language Modeling

with Pathways,” Apr. 2022, doi:

https://doi.org/10.48550/arXiv.2204.02311.

[17] S. Carta, A. Giuliani, L. Piano, A. S. Podda, L. Pompianu, and

S. G. Tiddia, “Iterative Zero-Shot LLM Prompting for

Knowledge Graph Construction,” ArXiv, Jul. 2023, doi:

https://doi.org/10.48550/arXiv.2307.01128.

[18] J. H. Caufield et al., “Structured prompt interrogation and

recursive extraction of semantics (SPIRES): A method for

populating knowledge bases using zero-shot learning,”

Bioinformatics, Feb. 2024, doi:

10.1093/bioinformatics/btae104.

[19] Z. Bi et al., “CodeKGC: Code Language Model for

Generative Knowledge Graph Construction,” ACM

Transactions on Asian and Low-Resource Language

Information Processing, Feb. 2024, doi: 10.1145/3641850.

[20] I. Bratko, Prolog Programming for Artificial Intelligence, 4th

ed. Harlow: Addison Wesley, 2012.

[21] J. K. Lee, K. Cho, H. Choi, S. Choi, S. Kim, and S. H. Cha,

“High-level implementable methods for automated building

code compliance checking,” Developments in the Built

Environment, vol. 15, Oct. 2023, doi:

10.1016/j.dibe.2023.100174.

[22] S. Ramanauskaitė, A. Shein, A. Čenys, and J. Rastenis,

“Security Ontology Structure for Formalization of Security

Document Knowledge,” Electronics (Switzerland), vol. 11,

no. 7, Apr. 2022, doi: 10.3390/electronics11071103.

[23] T. B. Brown et al., “Language Models are Few-Shot

Learners,” in 34th Conference on Neural Information

Processing Systems (NeurIPS 2020), 2020. [Online].

Available:

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb

4967418bfb8ac142f64a-Paper.pdf

[24] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning

in Large Language Models,” in Proceedings of the 36th

International Conference on Neural Information Processing

Systems, 2022.

[25] L. Zhong, Z. Wang, and J. Shang, “Debug like a Human: A

Large Language Model Debugger via Verifying Runtime

Execution Step by Step,” Findings of the Association for

Computational Linguistics: ACL 2024, Aug. 2024, doi:

10.18653/v1/2024.findings-acl.49.

[26] D. Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui,

“AgentCoder: Multi-Agent-based Code Generation with

Iterative Testing and Optimisation,” Dec. 2023, doi:

https://doi.org/10.48550/arXiv.2312.13010.

[27] Biro Klasifikasi Indonesia, “Rules for Electrical Installations

Consolidated Edition,” Part 1, Vol. IV, 2024 [Online].

Available: www.bki.co.id

