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Abstract  

In this research, we design logic rules as a representation of technical standards documents related to ship design, which will 

be used in automatic compliance checking. We present a novel design of logic rules based on a general pattern of technical 

standards’ clauses that can be produced automatically from text using a large language model (LLM). We also present a 

method to extract said logic rules from text. First, we design data structures to represent the technical standards and logic 

rules used to process the data. Second, the representation of technical standards is produced manually and tested to ensure 

that it can give the same conclusion as human judgment regarding compliance. Third, a variation of prompting methods, 

namely pipeline method and few-shot prompting, is given to LLM to instruct it to extract logic rules from text following the 

design. Evaluation against the logic rules produced shows that the pipeline method gives an accuracy score of 0.57, a precision 

of 0.49, and a recall of 0.62. On the other hand, logic rules extracted using few-shot prompting have an accuracy score of 0.33, 

precision of 0.43, and recall of 0.5. These results show that LLM is able to extract a logic rule representation of technical 

standards. Furthermore, the representation resulting from the prompting technique that utilizes the pipeline method has a 

better performance compared to the representation resulting from few-shot prompting. 
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1. Introduction  

In the context of shipping, classification is a process of 

verifying whether a vessel (ships or other floating 

structures) complies with technical standards 

throughout the vessel’s life [1]. This verification is done 

by anorganizatio independent governing body called a 

classification society,. Such a classification society 

usually works at a national level, such as Biro 

Klasifikasi Indonesia (BKI) in Indonesia, or sometimes 

it extends beyond national borders, such as the 

American Bureau of Shipping in the US.. A 

classification society checks whether the design 

documents of a vessel, as well as the corresponding 

(physically built) vessel itself, against recognized 

technical standards through document examinations 

and physical surveys. 

However, the compliance checking is still done 

manually. Typically, a (human) reviewer reads the 

technical standards to obtain the design requirements. 

Next, the data regarding the vessel whose compliance is 

to be checked is gathered from the design documents.  

Finally, the conclusion about compliance is made by 

checking the data against the requirements of technical 

standards. This manual process has many weaknesses, 

mainly because it is prone to error and its low efficiency 

[2].  

Compliance checking is a common task in engineering, 

construction, and architecture. As a result, there have 

been a number of research works done concerning the 

automation of the process. Given an object whose 

compliance with the standards is to be checked, several 

approaches utilize a knowledge graph to capture the 

object’s data and SPARQL queries [3], sometimes 

extended with custom-built rules, to represent the 

requirements. [2], [4]-[9]. Others such as Xue and 

Zhang [10] use logic programming rules to represent 

technical standards, while Ren et al. [11] and Liu et al. 

[12] employ deep learning models such as BERT [13] 

and Bi-LSTM to learn the pattern of the technical 

https://doi.org/10.29207/resti.v9i2.6285
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standards and compare them with the data to determine 

the compliance. 

The aforementioned approaches possess several 

shortcomings. They either obtain representation 

through a manual process, depend on specific (natural 

language) sentence patterns, or need a large, labeled 

dataset for training deep learning models. A manual 

process, such as that employed in [2], [4], [6], [7], [9] 

requires intensive participation by the corresponding 

domain experts, e.g., ship designers, structural 

engineers, etc. Unfortunately, such domain experts are 

not easily available. Meanwhile, methods that employ 

rule-based extraction, which rely on specific sentence 

patterns, such as those proposed in [5], [8], risks the 

possibility of unaccounted patterns that may appear 

when the standards are updated in the future. Finally, a 

labeled dataset containing annotated text of technical 

standards [11], [12]  may not be available for the 

domain in which the compliance checking is done, for 

example, electrical installations or structural design of 

ships. 

In this paper, we propose an approach that can avoid 

those shortcomings. Our approach makes use of 

recently developed generative LLMs, like GPT and its 

variants [14], Llama [15], and PaLM [16] to translate 

the requirements from the standards into a set of logic 

programming rules, which can then be run against data, 

represented as logic facts, obtained from the object for 

whom the compliance is to be checked. Specifically, we 

focus on compliance checking of vessels and their 

design documents with respect to the standards 

provided by BKI.  

Our approach leverages the ability of LLMs to extract 

structured data from natural language texts through 

prompt engineering, as shown in [17]-[19] to obtain a 

logic rules representation of technical standards. 

Employing LLM in our approach means we are able to 

automate the generation of logic rules representation 

without relying on intensive participation of domain 

experts. In addition, the utilization of LLM through 

prompt engineering lets us avoid the need for annotated 

datasets. Lastly, we define a general pattern of 

sentences found in the technical standard’s text to guide 

the LLM in the translation process. We ensure the use 

of a pattern general enough to be applied to any text in 

the technical standards, which means it will be flexible 

enough to account for any other sentence pattern that 

may be introduced in the future.  

In this research, logic programming rules are used as the 

representation of technical standards. We argue that a 

logic programming rule is the most appropriate 

representation for technical standards since it is 

inherently able to represent conditional sentences that 

are prevalent in technical standards. On the other hand, 

other representations, such as a knowledge graph, need 

a more complex form, such as shown in [5], [6]. 

Overall, the contribution of this work is threefold. First, 

we design logic programming rules that can be used to 

represent technical standards in the ship construction 

domain. Second, we develop prompts to extract the 

logic rules as designed from texts using LLM. To the 

best of our knowledge, there is no prior research that 

employs LLM to extract logic rules from texts. Last, we 

work on new documents that are technical standards 

published by BKI. 

This paper is organized as follows. After the 

introduction, we discuss our research methods in 

section 2, starting with a brief explanation of the 

compliance checking process and logic programming 

basics. Afterwards, we will explain our proposed 

method, which consists of the design of the logic rules, 

the prompt engineering we do to generate them, and the 

evaluation scenarios. Then, we present the results and 

discussion in Section 3. Lastly, we present the 

conclusion of our research in Section 4. 

2. Research Methods 

We first briefly explain the basic definitions relevant to 

the compliance checking process for vessel design and 

construction, as well as basic concepts from logic 

programming. Following these, we describe how the 

requirements from the technical standards can be 

represented as logic rules and then a prompt engineering 

approach to actually produce such logic rules from the 

requirements in the technical standards, which are 

expressed in complex natural language sentences.  

2.1 Compliance Checking Process 

Generally, compliance checking involves three 

components: requirements from technical standards, the 

objects being assessed, complete with their property, 

and the reviewer (human). The reviewer will read the 

technical standards and find the requirements. He will 

then gather the object’s properties from the design 

documents. Afterwards, he will compare the property 

with the requirement to determine whether the object 

complies with the requirement. In some cases, the 

reviewer may also conclude that the requirement is not 

applicable to the object. We will use the term 

compliance decision to refer to such a conclusion 

throughout this paper.  

We present an example of the compliance checking 

process using the following clause: “Emergency 

switchboard shall be installed above the uppermost 

continuous deck and behind the collision bulkhead.” 

This clause contains one sentence in which a 

requirement must be fulfilled by an object. In this 

clause, the object is “emergency switchboard” and it 

must satisfy the requirement that is, “be installed above 

the uppermost continuous deck and behind the collision 

bulkhead.” A reviewer will then consult the design 

document to check the position where the emergency 

switchboard is installed. If the position is 

simultaneously above the uppermost continuous deck 

and behind the collision bulkhead, then the clause is 

complied. Inversely, if the position does not satisfy the 

requirement, then the clause is not complied with. 
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In automatic compliance checking, the machine will do 

all the compliance checking processes from gathering 

the requirements to making the conclusion, as shown in 

Figure 1. Within the context of this research, 

requirements inside clauses are represented by logic 

rules, compliance decisions are obtained by executing 

the logic rules, and the extraction of requirements is 

done using LLM. To increase efficiency, the machine 

should also do the data extraction from documents 

related to compliance checking objects. However, for 

this research, data extraction is done manually. We will 

leave it for future research to include the extraction of 

data automatically.  

 

Figure 1. Illustration of automatic compliance checking. The area 

inside the dashed border is the scope of this research 

2.2. Logic Programming Basics 

In logic programming, we start with disjoint sets 𝒫 of 

predicates, ℱ of function symbols (including constant 

symbols), and 𝒱 of variables. A term is recursively 

defined as either a variable 𝑣 ∈ 𝒱, or a constant 𝑐 ∈ ℱ, 

or an expression of the form 𝑓(𝑎1, … , 𝑎𝑛) where 𝑓 ∈ ℱ 

is a function symbol of arity 𝑛 ≥ 1 and each 𝑎𝑖 are 

terms. Constant symbols are also called atoms in 

Prolog. An atomic formula is of the form 𝑝(𝑡1, … , 𝑡𝑛) 

where 𝑝 is a predicate of arity 𝑛 ≥ 0, and each 𝑡𝑖 are 

terms. A rule is a statement of the following form in 

Equation 1 

𝐻 ← B1, … , Bm                (1) 

𝐻, 𝐵1, … , 𝐵𝑚 are all atomic formulas or negations of 

atomic formulas expressed in the form of 

𝑛𝑜𝑡 𝑝(𝑡1, … , 𝑡𝑛). The rule in Equation 1 represents a 

logical implication and can be read as 

𝑖𝑓𝐵1, … , 𝐵𝑚 𝑡ℎ𝑒𝑛 𝐻. 

The atomic formula 𝐻 is called the head of the rule, 

while the set {𝐵1, … , 𝐵𝑚} is called the body of the rule. 

If 𝑚 =  0, we say that the rule is a fact. A logic 

program is then defined as a set of such rules. In the 

context of such a logic program, one may pose a query, 

which is just a conjunctive set of atomic formulas 

𝐹1, … , 𝐹𝑘.  

A list in logic programming is represented as either the 

atom ‘[ ]’ representing an empty list or a compound 

term with functor ‘.’ and two arguments representing 

the head and tail of the list. The tail of the list is itself a 

list, thus, a list can be represented in Equation 2. 

 . (𝑡1, . (𝑡2, … . (𝑡𝑛, [ ])))              (2)  

each 𝑡𝑖 is a term, and n is the number of elements in a 

list. For readability, special notation using square 

brackets can be used, so (2) can be represented as 
[𝑡1, 𝑡2, … , 𝑡𝑛]. Tuple and triple are terms in the form of 

(𝑡1, … , 𝑡𝑛) where n is 2 and 3 for tuple and triple, 

respectively. 

Negation in the logic programming language Prolog is 

implemented in the form of negation as failure. In this 

type of negation, 𝑛𝑜𝑡 𝑝 is evaluated by trying to prove 

𝑝. If 𝑝 is proven, then the negation 𝑛𝑜𝑡 𝑝 will fail. Since 

Prolog operates under a closed world assumption, 

whether 𝑝 is proven or not relies on whether the facts 

related to 𝑝 exist. 

In Prolog, the left arrow (←) is written using a 

semicolon followed immediately by a dash, i.e., the 

characters ‘:-’ (without the quotes). An example of a 

simple logic program is given in Equation 3. 

edge(a, b). 
edge(b, c). 
edge(c, d). 
 
path(A, B) :- edge(A, B).     
path(A, B) :- edge(A, X), path(X, B).             (3)  

The semantics of logic rules can be understood as a 

universally quantified logical implication. For example, 

in the rules given in equation (3), we define path (A,B) 
as a predicate that represents the existence of a path 

between points A and B. The rules then can be read as 

“path between A and B exists if there is an edge between 

A and B.” It also checks for the path that passes through 

other nodes before reaching B with the recursive call in   

path(A, B) :- edge(A, X), path(X, B). This rule is then 

read as “path between A and B exists if there is an edge 

between A and X and there is a path between X and B,”  

The conclusion of whether a path exists between two 

points, say a and d, is obtained by running a query as 

shown in Equation 4. 

?- path(a, d).                (4)   

in which the existence of the fact edge(a, d) is checked. 

When it is not found, the alternative rule is evaluated to 

recursively check whether a path connecting a to d 

through other nodes exists. For further details on the 

semantics of logic programs, please refer to [20]. 
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2.3. Overview of the Proposed Method 

Technical standards in our context typically consist of 

clauses that must be satisfied by a vessel or its design 

documents. Each clause is expressed in the form of one 

or more natural language sentences that convey the 

meaning of obligation or necessity. For the purpose of 

automating compliance checking, our aim is to 

represent such a clause as a set of logic programming 

rules. Meanwhile, data about a vessel or its design 

documents are represented as a set of logic 

programming facts. The compliance checking is then 

realized by running a query (expressing a compliance 

check for a particular object) against the logic 

programming rules (expressing the requirements from 

the standard and the database of facts corresponding to 

all objects whose compliance is to be checked). 

Since there are numerous requirements in technical 

standards, it is generally infeasible to write logic 

programs to represent all those requirements. Thus, the 

second part of our proposed method consists of the use 

of an LLM to generate a logic program that 

approximately represents the requirements in the 

standards. Specifically, we employ prompt engineering 

over GPT-4o to obtain logic rules. The overall scheme 

of our proposed method is shown in Figure 2. 

 

Figure 2. Overall scheme of the proposed method.  

2.4. Expressing Data as Facts 

One of the parts of compliance checking is a database 

of facts corresponding to objects whose compliance is 

to be checked. These facts consist of the representation 

of objects and their properties. In addition, they also 

represent the relation between objects.  

First, we define ObjectID as a representation of the 

object. ObjectID is defined as a combination of number 

and initials of the object. Second, we define facts that 

represent the properties of objects. The category of the 

object is represented as a fact named hasCategory. This 

fact has two arguments, ObjectID and Category of the 

object. Third, the facts that represent relationships 

between objects are defined. A predicate named 

objectRelation is used for this purpose. It may have 

arity of 3 to represent S – V – O structure or arity of 2 

to represent S – V structure. Last, we define a fact to 

represent information about objects’ numerical value. 

The predicate named hasValue is defined with an arity 

of 2 and arguments which consist of ObjectID and 

Number. The summary of the facts is presented in 

Table 1. 

 

Table 1. Facts 

To better illustrate how data is represented as logic 

programming facts, we choose one clause as an 

example, that is “If internal combustion engines and 

boiler plants operating on heavy fuel, provision is to be 

made to ensure that internal combustion engines and 

boiler plants can be operated temporarily on fuel which 

does not need to be preheated”. This clause gives 

requirements regarding a ship’s machinery installation, 

specifically the combustion engine and boiler plant. We 

present some data related to those objects and their 

representation as facts in Table 2. 

Table 2. Example of Facts 

2.5. Expressing Clauses as Logic Rules 

Logic rules representation is produced based on the 

clauses. Our approach differs from the method 

explained in [10] in that we use a general pattern that is 

applicable to all clauses to minimize variation in logic 

rules. We observe the clauses used in technical 

standards to find the general pattern. Based on that 

consideration, we defined two components of a 

sentence, prerequisite and main requirement. 

Prerequisite is a requirement that has to be satisfied so 

that the clause is applicable to a given object. Main 

requirement is a requirement that has to be satisfied by 

the object so that the clause is deemed as complied. We 

use our earlier example to illustrate this concept in 

Figure 3. 

 

Figure 3. Illustration of prerequisite (in bold) and main requirement 

in a text    

In that clause, the prerequisite part means that the main 

requirement only applies to internal combustion 

engines and boiler plants that satisfy the condition of 

“operating on heavy fuel”. If there exist internal 

Object category 

hasCategory(ObjectID, Category) 
Object relation 
objectRelation(ObjectID1, Relation, ObjectID2) 
objectRelation(ObjectID, Relation) 
Object value 

hasValue(ObjectID, Number) 

Data 

Internal combustion engine operates on heavy fuel 

Boiler plant operates on heavy fuel   

Facts 
hasCategory(id1_ice, internal_combustion_engine). 
hasCategory(id1_bp, boiler_plant). 
hasCategory(id1_hf, heavy_fuel). 
objectRelation(id1_ice, operates_on, id1_hf). 
objectRelation(id1_bp, operates_on, id1_hf). 
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combustion engines and boiler plants that operate on 

heavy fuel, the main requirement has to be satisfied so 

that internal combustion engines and boiler plants are 

deemed to comply with the said clause, i.e. they must 

be able to be temporarily operated on fuel which does 

not need to be preheated. 

Inspired by the approach proposed by Lee et al. [21] and 

Ramanauskaitė et al. [22] we break each part even 

further into atomic statements. We defined a more 

general structure of this atomic statement to be a simple 

statement that follows S – P – O (Subject – Predicate – 

Object) akin to knowledge graph triples. With this 

definition, structures such as S – V – O (Subject – Verb 

– Object), S – V (Subject – Verb), or S – V – C (Subject 

– Verb – Complement) can be accommodated, which 

will be explained later.  

Following the pattern in the clause, the main 

requirement and prerequisite may share an object in S 

or O position. Alternatively, they may have their 

separate sets of objects. Figure 4 illustrates this pattern. 

 

Figure 4.Illustration of atomic statements. Dashed thick border 

indicates objects in S position shared by main requirement and 

prerequisite. P index is used to indicate words belonging to 

prerequisite, while words with M index belongs to main 

requirement. The same words are assigned to the same index 

Another pattern that we consider is the logical relations 

between objects and statements, marked by the use of 

connectives. There are three types of connectives used 

in the clauses, namely and, or, and/or. The explanation 

for each relation is given below:  

And: this relation means that all the objects in the 

statement must exist, or all the statements must be true 

for the clause to be evaluated to comply.  

Or: this relation conveys the meaning of exclusive or 

(XOR) in logics, i.e. when used to connect objects, only 

one object needs to exist for the clause to be evaluated 

as comply. Similarly, when used as a connector between 

statements, only one statement needs to be true. The 

objects and statements connected by or cannot be 

simultaneously true.  

And/or: this relation between objects means that one or 

more objects need to exist and the statements involving 

the objects that exist must all evaluate to true for the 

overall clause to be evaluated as comply.  

The following examples illustrate the relations further: 

− Generator and main switchboard must be installed 

in main engine room 

This clause means that both generator and main 

switchboard must be provided and both of them 

must be installed in main engine room. 

− Generator must be installed in main engine room or 

particular auxiliary machinery room 

This clause means that generator must be installed in 

either main engine room or particular auxiliary 

machinery room. It cannot be installed in both 

rooms. 

− Emergency switchboard must be installed in the 

room containing emergency generator and/or 

emergency battery 

This clause means that emergency generator, 

emergency battery or both of them must be 

provided. Whichever is provided must be installed 

in the same room with emergency switchboard. 

After identifying the patterns in the clause, we define 

the logic rules to represent the clause based on the 

identified pattern. First, we take a look at the general 

structure of the clause which contains prerequisite and 

main requirement. We define the compliance value of a 

clause as true if the requirements in prerequisite and 

main requirement are fulfilled. We also define the 

compliance value to be true if the prerequisite is not 

fulfilled. The reason for this choice is twofold. The first 

one is that since there is no other conclusion in logic 

other than true or false, one of the two needs to be 

chosen to indicate that the clause is not applicable. The 

second is that when the prerequisite is not fulfilled, it is 

generally considered still complied by reviewer, thus 

the compliance value will be defined as true when the 

prerequisite is not fulfilled. Based on the 

aforementioned considerations, the main rule is defined 

in Table 3. 

Table 3. Main rule 

Main rule 

satisfiesRegulation(RuleID) :- 
    applicableRule(RuleID, PrereqObjects), !, 
    satisfiesMainRequirement(RuleID, PrereqObjects). 
satisfiesRegulation(RuleID). 



 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 348 

 

In this rule, a RuleID is assigned to each clause and 

satisfiesRegulation takes RuleID as an argument. If a 

clause with RuleID of r1 is complied then 

satisfiesRegulation(r1) will evaluate to true. 

Furthermore, satisfiesRegulation will evaluates to true 

when both predicates applicableRule and 

satisfiesMainRequirement evaluates to true. When 

applicableRule evaluates to false, alternative rule of  

satisfiesRegulation will be evaluated which will be 

true, mimicking the definition previously mentioned.  

Next, the rules to check applicability and fulfillment of 

main requirement is defined. These rules have the 

predicates applicableRule and 

satisfiesMainRequirement as their head, respectively. 

The rules are presented in Table 4. 

Table 4. Rule for applicability and fulfillment 

Rule to check applicability 

applicableRule(RuleID, PrereqObject) :- 
processPrerequisite(RuleID, PrerequisiteStatement, Acc, 
PrereqObjects). 

Rule to check main requirement fulfillment 
satisfiesMainRequirement(RuleID, PrereqObjects):- 

resolveRequirement(RuleID, MainRequirementStatement, 
PrereqObjects, LinkedObject). 

Both applicableRule and satisfiesMainRequirement 
have arity of 2 which consists of the RuleID and a 

variable called PrereqObjects. This variable will be 

unified in applicableRule with objects that satisfy the 

requirements. The same variable is also used as 

argument in satisfiesMainRequirement to represent 

objects shared between prerequisite and main 

requirement. Other variables used for this 

representation are Acc and LinkedObject. Acc is used to 

collect objects in prerequisite that satisfy the 

requirements. After all the objects are checked, it will 

be unified with PrereqObjects. LinkedObject is in the 

form of a list of objects in prerequisite that will also be 

used in main requirements, hence the name. Only 

objects that are both present in PrereqObjects and 

LinkedObject will be used to check the fulfillment of 

main requirement. In a condition where there is no 

common object between main requirement and 

prerequisite, LinkedObject will be an empty list. 

The atomic statements that formed the prerequisite and 

main requirement are represented in variables. They are 

named PrerequisiteStatement and 

MainRequirementStatement respectively. Those 

variables are List of tuples and triples as explained in 

Table 5.  

Main requirement statements 
[ 

(Obj1, Relation, Obj2), 
... 

] 

Linked objects 
[LObj1, LObj2, ..., LObjn] 

PObj is prerequisite object in the form of list of tuples. 

The list of tuples is in turn in the form of [(Fx, Cat)]. Fx 

is a variable, where x is a running number and Cat is an 

atom that indicates the category of the object. 

The triple (Obj1, Relation, Obj2) is a representation of 

atomic statement in triple form. As explained before, 

the atomic statement follows the structure of S – P – O. 

Consequently, the predicate (P) is not always a verb and 

the object (O) may not be a noun. 

Obj1 is the first object of the statement. It fills the 

position of Subject (S) in the S – P – O triple. Only list 

of tuple in the form of [(Fx, Cat)] is allowed as Obj1. If 

the same object is referred multiple times in the text, 

they will have same variable. 

Relation between object in the statement fills the 

position of Predicate (P) in the S – P – O triple. As 

mentioned before, Relation is not always a verb and 

modals in the predicate is omitted. We define the 

Relation to be one of the several possible form. The first 

one is an atom that represents the relation between 

objects e.g. installedIn, equippedWith, protects. Next, 

the Relation can be in the form of mathematical 

comparison symbols e.g. more than (>), equals to (==), 

not equal to (<>). Last, the Relation can take the form 

of special relation named comp. 

Table 5. Data structure (prerequisite object is in bold, statements are 

in italic, and objects are marked with underline) 

Prerequisite statements 

[ 
       (PObj, [ 
              (Obj1, Relation, Obj2), 
              ... 
       ]), 
       ... 
] 

Mathematical comparison symbols are used to 

represent comparison between objects and numbers. On 

the other hand, the special relation comp is used to 

represent comparison between objects. Comparison 

between objects is handled using a special rule called 

comparison. The rule is defined in Table 6.  

Table 6. Comparison rule 

Comparison rule 

comparison(RuleID, Value1, Value2) :- 

    Value1 ? Num   Value2     
 

Note: 

Num denotes a number 

? denotes comparison (<, >, >=, <=, ==, <>)  

 denotes mathematical operator (addition, multiplication, 

divsion) 

Obj2 is the second object of the statement. This 

component fills the position of Object (O) in the S – P 

– O triple. Several types of data objects are allowed for 

Obj2. The first one is list of tuple in the form of [(Fx, 
Cat)]. Special atom named no_object is also allowed, 

which is used when the original statement in the clause 
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follows S – V structure. Lastly, numbers are also 

allowed to be in the position of Obj2. 

LObj is the list-linked object. It is used to indicate shared 

objects between the prerequisite and the main 

requirement. Only tuple in the form of (Fx, Cat) is 

allowed as LObj. Objects in the linked object list will 

have the same variable as an object in the main 

requirement statement if they are of the same category. 

Using the design shown in Table 3 through Table 5, we 

show another example of logic rules representation. We 

use our running example of the clause to demonstrate 

how a clause is represented in logic rules. We assign the 

RuleID of r1 for this representation. This example can 

be found in Table 7. 

Table 7. Rule for applicability and fulfilment 

Clause 

If internal combustion engines and boiler plants operating on 

heavy fuel, provision is to be made to ensure that internal 

combustion engines and boiler plants can be operated 

temporarily on fuel which does not need to be preheated 

Representation 
satisfiesRegulation(r1) :- 
    applicableRule(r1, PrereqObjects), !, 
    satisfiesMainRequirement(r1, PrereqObjects). 
satisfiesRegulation(r1). 
applicableRule(r1, PrereqObject) :- 

processPrerequisite(r1, [ 
([(P1, internal_combustion_engine)], [ 

([(P1, internal_combustion_engine)], operates_on, 
[(P2, heavy_fuel)]) 

]), 
([(P1, boiler_plant)], [ 

([(P1, boiler_plant)], operates_on, [(P2, heavy_fuel)]) 
]) 

], Acc,  PrereqObjects). 
satisfiesMainRequirement(r1, PrereqObjects):- 

resolveRequirement(r1, [ 
([(F1, provision)], made, no_object), 
([(F1, provision)], ensure, no_object), 
([(F2, internal_combustion_engine)], 
operates_temporarily_on, [(F2, fuel)]), 
([(F3, boiler_plant)], operates_temporarily_on, [(F2, 
fuel)]), 
([(F2, fuel)], need_not_to_be_preheated, no_object) 

], PrereqObjects, [(F2, internal_combustion_engine), (F3, 
boiler_plant)]). 

After defining rules related to the prerequisite and main 

requirement, as well as the facts, we define the way to 

represent logical relations in the clause. And relation is 

represented as triples in the same List in the prerequisite 

or main requirement statement. Or relation is 

represented using alternative rules, so multiple 

applicableRule or satisfiesMainRequirement 
predicates are used to represent it. On the other hand, 

And/Or relation is represented as multiple (Fx, Cat) 
tuples in the Obj1 or Obj2 position. The examples of 

such representation are presented in Tables 8 through 

10. 

The rules to check the applicability and fulfillment of 

the main requirement have processPrerequisite and 

resolveRequirement as the head, respectively. In 

general, those rules involve recursively evaluating the 

list of triples which represent atomic statements. To find 

suitable objects, hasCategory facts are searched to find 

objects whose Category matched with the value of Cat 
in [(Fx, Cat)] tuple. After objects with matched category 

are found, next the ObjectID is unified with Fx. Moving 

on to the relation between objects, objectRelation facts 

are then searched to determine whether there is a 

relation between objects that matched the one stated in 

the triples. When comparison is involved, the value of 

the object is first obtained by searching through the 

hasValue facts and then the value is used to evaluate the 

predicate comparison.  

For processPrerequisite, the PObj part of the tuple will 

be appended to the variable Acc if the list of triples is 

evaluated to true.  It will then consequently unified with 

PrereqObjects. In resolveRequirement the elements of 

PrereqObjects will be unified with elements of 

LinkedObject whose category is the same and then used 

to evaluate the list of triples recursively. 

Table 8. And relation example 

Original text 

Control panel and switchboard must be installed in control 

room 

Representation 
satisfiesMainRequirement(r1, PrereqObjects):- 
  resolveRequirement(r1, [ 
      ([(F1, control_panel)], installed_in, [(F2, control_room)]), 
      ([(F1, switchboard)], installed_in, [(F2, control_room)]) 
  ], PrereqObjects, LinkedObj). 

Table 9. Or relation example 

Table 10. And/Or relation example 

2.6. Prompt Engineering to Generate Logic Rules 

After designing the logic rules to represent clauses of 

technical standards, we define the prompt that is given 

to LLM to obtain such representation from the text. We 

take inspiration from research conducted by Carta [17], 

Original text 

Generator must be installed in engine room or machinery room 

 

Representation 
satisfiesMainRequirement(r1, PrereqObjects):- 
  resolveRequirement(r1, [ 
      ([(F1, generator)], installed_in, [(F2, engine_room)]), 
  ], PrereqObjects, LinkedObj). 
 
satisfiesMainRequirement(r1, PrereqObjects):- 
  resolveRequirement(r1, [ 
      ([(F1, generator)], installed_in, [(F2, machinery_room)]), 
  ], PrereqObjects, LinkedObj). 

Original text 

Generator and/or battery must be provided 

 

Representation 
satisfiesMainRequirement(r1, PrereqObjects):- 
  resolveRequirement(r1, [ 
      ([(F1, generator), (F2, battery)], provided, no_object) 
  ], PrereqObjects, LinkedObj). 
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which uses zero-shot prompting in a pipeline manner. 

We modify the pipeline and incorporate few-shot 

prompting [23] and chain-of-thought [24] to analyze the 

sentence structure in a clause and obtain the logic rules. 

For the remainder of the paper, this method will be 

called the pipeline method. 

Considering the ability of LLM to generate code to 

solve the problem given in the prompt, we explored 

another prompting method to obtain the logic rules 

representation. In this method, we prompt the LLM to 

obtain logic rules directly from text. To steer it to use 

the logic rules we have previously defined, we use few-

shot prompting and give it several examples. We call 

this method a code generation method.  

The pipeline method generally consists of the analysis 

of sentence structure and extracting its component to 

obtain logic rules. The LLM is given several tasks in a 

pipeline to obtain logic rules from text. The tasks given 

to LLM can be seen in Figure 5. 

 

Figure 5. LLM Task in Pipeline Manner  

First, the LLM is tasked to rewrite the text of the 

technical standard. It is done by prompting LLM to do 

coreference resolution to the text so that all synonyms 

and pronouns are changed into the object they are 

referring to. In addition, given the text of the technical 

standards and its context, LLM is also tasked to rewrite 

the text to incorporate the context.  

Next task is identification of main requirement and 

prerequisite. Identification is done while considering 

whether the prerequisite is explicit and whether 

expression of permission is present. The prompt given 

to LLM can be summarized with the flowchart shown 

in Figure 6. 

 

Figure 6. Flowchart of Main Requirement and Prerequisite 

Identification Process 

After main requirement and prerequisite are identified, 

LLM is tasked to identify the objects of each of those 

parts. The objects are not necessarily in grammatical 

Object (O) position, but they are always a noun. 

Coordinating conjunction between objects is left as it is. 

LLM is also given prompt to break down object in the 

form of participial phrase or noun phrase to S – P – O 

triples. In addition, the object that implies the meaning 

of possession is also broken down to S – P – O triples. 

For example, the phrase “rated current of motor” or 

“motor’s rated current” is converted into “motor – has 

– rated current”. 

Next, a prompt is given to LLM to extract atomic 

statements from prerequisite and main requirement. 

Generally, it is done by breaking down the sentences 

into S – P – O triples where the S and O must be singular 

noun and the P must conform to the singular form of S 

and O. Some considerations have to be taken, 

particularly regarding comparison. Predicates that 

contain comparison between object and number must be 

converted into mathematical comparison symbol, for 

example phrases like “more than” and “not less than” is 

converted into “>” and “>=”. On the other hand, 

comparison between objects is converted so that the 

comparison uses special relation comp and then the 

actual comparison is separated from the text. For 

example, the comparison in the sentence “The 

protection is not to be less than 150% the rated current 

of the motor” is converted into “protection – comp – 

rated current” while the actual comparison “protection 

– >= – 150% * rated current” is placed separately from 

the rest of the text. This extraction can be summarized 

in the flowchart shown in Figure 7. 



 Rizky Nugroho, Adila Krisnadhi, Ari Saptawijaya 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 351 

 

 

Figure 7. Flowchart of Atomic Statements Extraction Process 

Another consideration is related to the logical relation 

in the text. To handle this logical relation, the atomic 

statements are first grouped based on the part of the text 

they originated. Indications are also given to show the 

logical relation applied to them. For example, the text 

“Electrical installation must be provided with a device 

to protect against residual current or a device to monitor 

ground fault” is extracted into the following atomic 

statements: 

(or_1) electrical installation – provided with – device 

(or_1) device – protect against – residual current 

(or_2) electrical installation – provided with – device 

(or_2) device – monitor – ground fault 

The last part of the pipeline deals with conditioning the 

atomic statements so that it will be easier to convert into 

logic rules as designed. First, the identified atomic 

statements are collected in JavaScript Object Notation 

(JSON) format. The structure of the JSON is presented 

in Table 11. 

The value of type is a string that indicates the logic 

relation in the original text i.e. “AND”, “OR”, or 

“AND/OR”. The objects related to the atomic 

statements are marked with the key objects in the form 

of array of strings such as [“motor”, “generator”], or 

[“panel”], while the atomic statements are arranged as 

array of strings in the form of [“object1 – relation – 
object2”] and marked with the key statements. The 

key calculation marks the comparison between object 

in the form of ”Value1 ? Num   Value2” as explained in 

Table 6.    

Next, the objects are converted into [(Fx, Cat)] tuples. 

The object will be used as the category, while the 

variable is assigned by LLM. We define the naming of 

convention of the variables where Px is used as 

variables related to prerequisite and Fy is used as 

variables related to main requirement while x and y are 

running numbers. As previously explained, objects that 

are referred multiple times in the text will have the same 

variable. 

Table 11. JSON structure 

JSON 

{ 
   "prerequisite": { 
      "type": type, 
         "pair": [ 
            { 
               "objects": objects, 
               "statements": statements 
            } 
         ], 
      "calculation": calc 
   },             
   "main_requirement": { 
      "type": type, 
         "pair": [ 
            { 
               "objects": objects, 
               "statements": statements 
            } 
         ], 
      "calculation": calc 
   } 
} 

The completed JSON is then processed using a Python 

script to be converted to proper logic rules. A 

postprocessing process is also applied to the resulting 

logic rules to ensure that the rules can be executed 

without error. The postprocessing contains converting 

dashes (-) to underscores ( _ ) and changing capital 

letters to lowercase. 

The code generation method makes use of the LLM 

ability to understand and generate code [25] [26]. For 

this method, we utilize few-shot prompting to directly 

convert text to logic rules. We use few-shot prompting 

to make sure that the logic rules produced by LLM 

follow the rules and data structures we have defined 

previously. 

We prepare several pairs of text and the resulting logic 

rules as examples for the LLM. The pairs are selected 

to present LLM a variety of clause structures and their 

corresponding logic rules representation. The examples 

contain clauses with and without prerequisites, a variety 

of logical relations and clauses containing comparison, 

whether it is between objects or between objects and 

number. 
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2.7. Data and Evaluation Scenarios 

We use 30 clauses from Rules for Electrical 

Installations (Pt.1, Vol.IV) [27] published by BKI. The 

selected clause contains no table, figure, equation or 

definition. We assign RuleID of r1 through r30 for the 

clauses. Some characteristics of the clauses are 

presented in Table 12.  

Table 12. Characteristics of clauses used 

Criteria # of clause Clause 

With prerequisite 20 r1, r2, r3, r4, r6, r9, 

r10, r11, r13, r14, 

r15, r18, r20, r21, 

r22, r23, r24, r25, 

r26, r27, r29 

No prerequisite 10 r5, r7, r8, r12, r16, 

r17, r19, r21, r28, 

r30 

With “and” relation 26 r2, r3, r4, r5, r6, r7, 

r8, r10, r11, r12, 

r13, r14, r15, r16, 

r17, r19, r20, r21, 

r22, r23, r24, r25, 

r27, r28, r29, r30 

With “or” relation 5 r1, r2, r3,  r10, r27 

With “and/or” relation 3 r9, r10, r26 

With comparison 6 r5, r7, r8, r12, r28, 

r30 

The facts used to evaluate the logic are taken from real 

design documents of three (3) ships of the type of tug 

boat. The designs of these ships have already been 

judged as complying with the technical standards by the 

reviewer. We then obtain the facts following the 

previously explained format. We also use synthetic data 

to present facts which are then judged by reviewers as 

not complying and not applicable. We label the data 

from the three real ships as originating from ship 1 

through 3, and the synthetic data is given labels ship 4 

and ship 5. Some examples of the facts obtained are 

presented in Table 13.  

The prompt and the logic rules are run on a laptop with 

an Intel Core i7 8 CPU @2.9GHz processor and 16GB 

RAM. We use GPT4o LLM, which is accessed using an 

application programming interface (API) provided by 

Openai with a temperature setting of zero (0). The code 

used to access the API is written in Python using the 

LangChain library. The logic rules are written in Prolog 

while the execution is done using SWI-Prolog. 

Table 13. Examples of facts 

Data 

Motor has power rating of 4000 W 

Motor is protected against short circuit  

Motor is protected against overload 

Table 13. Examples of facts - continued 

Facts 
hasCategory(id94a_mot, motor). 
hasCategory(id95a_pwr, power_rating). 
objectRelation(id94a_mot, has, id95a_pwr). 
objectRelation(id94a_mot, protected_against, id72_shc). 
objectRelation(id94a_mot, protected_against, id73_ovl). 
hasValue(id95a_pwr, 4000). 

Two types of evaluation are done in this research. The 

first is done to the design itself to evaluate how well the 

logic rules that we design are able to represent the 

technical standards clauses. The second one is done 

according to the logic rules obtained using LLM to 

evaluate how well the output of LLM is able to 

represent the technical standards clause. 

We argue that the logic rules representation obtained 

using LLM cannot be evaluated using its similarity with 

the logic rules obtained manually. The clause of 

technical standards can be represented as logic rules in 

many ways; thus, if the logic rules are not similar, we 

cannot dismiss them outright as false representations. 

Hence, for the evaluation, we measure the faithfulness 

of the representation. We define faithful representation 

as one which will give the same compliance decision as 

the reviewer's judgement given the same facts. In both 

evaluations, various facts are provided. We seek 

judgment from reviewers on whether the given fact will 

produce a compliance decision of true, false or not 

applicable. We then compare it with the compliance 

decision as produced by the logic rules. 

To do the first evaluation, we make the logic rules 

representation manually. For the second evaluation, the 

prompt from each method is run 5 times. The resulting 

logic rules are then run against the provided facts. 

Since there is no metric to measure faithfulness, we 

approximate it by posing the evaluation as an evaluation 

of multi-class classification. We treat each compliance 

decision as a class and then define the true value as the 

compliance decision based on reviewer judgement, and 

the predicted value as the compliance decision 

produced by the logic rules. Afterwards, we calculate 

the accuracy score as well as macro-averaged precision 

and recall. 

3. Results and Discussions 

3.1 Results 

As explained before, first, we make a logic rules 

representation of the technical standards manually. We 

execute it against the facts provided and record the 

result as shown in Table 14. This table groups the 

clauses in comply, not comply, and not applicable 

groups based on ground truth and results from 

executing logic rules. We find that the representations 

produce exactly the same compliance decision as 

reviewer judgement. We also present some examples of 

the manually obtained logic rules in Table 15. 

Logic rules obtained by using LLM are executed with 

the same provided facts. We present a sample of results 

of logic rules execution in Table 16, while the overall 

result measured as accuracy, precision and recall score 

is presented in Table 17. It can be seen that logic rules 

obtained using the pipeline method have better 

accuracy, precision and recall than those obtained using 

the code generation method. We can say then, between 

the two methods utilized, logic rules obtained using the 
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pipeline method can represent the technical standards 

more faithfully. 

Table 14. Result of executing the manually obtained logic rules 

Ship Compliance Ground Truth Result from 

logic rules 

Ship 1 Comply r1 - r6, r8-r30 r1 - r6, r8-r30 

 Not comply r7 r7 

 N/A - - 

Ship 2 Comply r1 - r7, r9-r30 r1 - r7, r9-r30 

 Not comply - - 

 N/A r8 r8 

Ship 3 Comply r1 - r7, r9-r30 r1 - r7, r9-r30 

 Not comply - - 

 N/A r8 r8 

Ship 4 Comply r3, r4, r6, r7, 

r10, r13, r15, 

r16, r17, r18, 

r24, r26, r27 

r3, r4, r6, r7, 

r10, r13, r15, 

r16, r17, r18, 

r24, r26, r27 

 Not comply r1, r2, r5, r9, 

r11, r12, r14, 

r19, r20-23, r25, 

r28-r30 

r1, r2, r5, r9, 

r11, r12, r14, 

r19, r20-23, r25, 

r28-r30 

 N/A r8 r8 

Ship 5 Comply r1-r4, r6, r9, r10, 

r11, r13-r15, 

r18, r20, r22-

r25, r26, r27, 

r29 

r1-r4, r6, r9, r10, 

r11, r13-r15, 

r18, r20, r22-

r25, r26, r27, 

r29 

 Not comply - - 

 N/A r5, r7, r8, r12, 

r16, r17, r19, 

r21, r28, r30 

r5, r7, r8, r12, 

r16, r17, r19, 

r21, r28, r30 

Table 15. Examples of manually obtained logic rules 

Original text 

Main and emergency switchboards shall be fitted with 

insulation handrails or handles. 

Rules 
applicableRule(r27, PrereqObjects):- 
    processPrerequisite(r27, [], [], PrereqObjects). 
satisfiesMainRequirement(r27, PrereqObjects):- 
    resolveRequirement(r27, [ 
            ([(F1, main_switchboard)], fitted_with, [(F2, 
insulation_handrail)]), 
            ([(F1, emergency_switchboard)], fitted_with, [(F2, 
insulation_handrail)]) 
        ], PrereqObjects, []). 
satisfiesMainRequirement(r27, PrereqObjects):- 
    resolveRequirement(r27, [ 
            ([(F1, main_switchboard)], fitted_with, [(F2, 
insulation_handle)]), 
            ([(F1, emergency_switchboard)], fitted_with, [(F2, 
insulation_handle)]) 
        ], PrereqObjects, []). 

Original text 

Motors with a power rating of more than 1kW shall be 

individually protected against overloads and short-circuits 

Rules 
applicableRule(r28, PrereqObjects):- 
    processPrerequisite(r28, [ 
            ([(P1, motor)],[ 
                ([(P1, motor)], has, [(P2, power_rating)]), 
                ([(P2, power_rating)], >=, 1000) 
            ]) 
        ], [], PrereqObjects), 
    checkNotEmpty(PrereqObjects). 
 

 

Table 15. Examples of manually obtained logic rules - continued 

Rules 
satisfiesMainRequirement(r28, PrereqObjects):- 
    resolveRequirement(r28, [ 
            ([(F1, motor)], protected_against, [(F2, overload)]), 
            ([(F1, motor)], protected_against, [(F2, short_circuit)]) 
        ], PrereqObjects, [(F1, motor)]). 

Table 16. Result of executing the logic rules obtained from LLM 

Ship Compliance Ground 

Truth 

Result from logic rules 

Pipeline Code 

Generation 

Ship 1 Comply r1-r6, r8-

r30 

r1, r3, r4, 

r6, r9, 

r11-r15, 

r18-r25 

r4, r5, r18, 

r20, r22, 

r23, r25, 

r28 

 Not comply r7 r2, r5, r7, 

r8, r10, 

r16, r17, 

r26, r27, 

r30 

r1, r3, r6, 

r8-r11, r13-

r15, r26, 

r27 

 N/A - r28, r29 r2, r7, r12, 

r16, r17, 

r19, r21, 

r24, r29, 

r30 

Ship 2 Comply r1-r7, r9-

r30 

r1, r3, r4, 

r6, r9, 

r11-r15, 

r18-r25 

r4, r5, r18, 

r20, r22, 

r23, r25, 

r28 

 Not comply - r2, r5, r7, 

r8, r10, 

r16, r17, 

r26, r27, 

r30 

r1, r3, r6, 

r8-r11, r13-

r15, r26, 

r27 

 N/A r8 r28, r29 r2, r7, r12, 

r16, r17, 

r19, r21, 

r24, r29, 

r30 

Ship 3 Comply r1 - r7, 

r9-r30 

r1, r3, r4, 

r6, r9, 

r11-r15, 

r18-r25 

r4, r5, r18, 

r20, r22, 

r23, r25, 

r28 

 Not comply - r2, r5, r7, 

r8, r10, 

r16, r17, 

r26, r27, 

r30 

r1, r3, r6, 

r8-r11, r13-

r15, r26, 

r27 

 N/A r8 r28, r29 r2, r7, r12, 

r16, r17, 

r19, r21, 

r24, r29, 

r30 

Table 16. Result of executing the logic rules obtained from LLM - 

continued 

Ship Compliance Ground 

Truth 

Result from logic rules 

Pipeline Code 

Generation 

Ship 4 Comply r3, r4, r6, 

r7, r10, 

r13, r15, 

r16, r17, 

r18, r24, 

r26, r27 

r3, r4, r6, 

r13, r14, 

r15, r18, 

r24 

r4, r18 

 Not comply r1, r2, r5, 

r9, r11, 

r12, r14, 

r19, r20-

23, r25, 

r28-r30 

r1, r2, r5, 

r7-r12, 

r16, r17, 

r19-r23, 

r26, r27 

r1, r3, r5, 

r6, r8-r11, 

r13-r15, 

r20, r22, 

r23, r26-r28 
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Ship Compliance Ground 

Truth 

Result from logic rules 

Pipeline Code 

Generation 

 N/A r8 r25, r28-

r30 

r2, r7, r12, 

r16, r17, 

r19, r21, 

r24, r25, 

r29, r30 

Ship 5 Comply r1-r4, r6, 

r9, r10, 

r11, r13-

r15, r18, 

r20, r22-

r25, r26, 

r27, r29 

r1, r3, r4, 

r6, r9, 

r11, r13, 

r14, r15, 

r18, r20, 

r22-r25 

r4, r5, r18, 

r20, r22, 

r23, r25 

 Not comply - r2, r5, 

r10, r16, 

r17, r19, 

r26, r27 

r1, r3, r6, 

r9-r11, r13-

r15, r26, 

r27 

 N/A r5, r7, r8, 

r12, r16, 

r17, r19, 

r21, r28, 

r30 

r7, r8, 

r12, r21, 

r28-r30 

r2, r7, r8, 

r12, r16, 

r17, r19, 

r21, r24, 

r28-r30 

Table 17. Evaluation of logic rules obtained using LLM 

3.2 Discussions 

Evaluation of logic rules obtained manually shows that 

the logic rules designed in this research have already 

been able to represent the 30 clauses used. Since the 

pattern used as the basis of logic rules design is general 

enough, we argue that this design can be applied to 

other clauses in the technical standards. The exception 

is on the clause that contains tables, figures and 

equations. We will try to address these limitations in 

future works. 

To analyze the performance of the representation 

obtained using LLM, we compare the logic rules 

outputted by LLM and the logic rules made manually. 

As explained before, we avoid evaluating the similarity 

of the logic rules since different logic rules do not 

necessarily mean that the rules are incorrect. Instead, we 

define several fault categories that may be present in the 

logic rules obtained by LLM. 

All the occurrence of the fault is then presented in the 

bar chart in Figure 8. For each of the 5 runs of each 

method, we count all the occurrences of the following 

fault. The first fault is an incorrect prerequisite that is 

defined as a condition in which LLM produce a 

prerequisite where there is none or vice versa. The 

second fault, incorrect object representation, is defined 

as a condition where objects are not broken down into 

simpler objects or combined with another object. 

Incorrect number of statements is the third fault where 

LLM leave out some atomic statements or even makes 

some that do not exist in the original text. Fault number 

four, incorrect logical relation, is when the 

representation of the logical relation does not match 

what is written in the text, e.g. making an or-relation 

representation when the relation in the text is an and-

relation and so on. Next, incorrect comparison is the 

condition where the comparison in the text is not 

represented using the format given. Last, mis-ordered 

relation is the condition where the order of object in a 

relation is incorrect. This kind fault happened, for 

example, when the text “rated power of motor” is 

represented as “rated power – has – motor.”  

 

Figure 8. Flowchart of Atomic Statements Extraction Process 

Examples of the occurrence of errors in the rules are 

given in Table 18. In that table, we present the original 

text of the clause, the representation that is obtained 

manually, and the representation generated from LLM 

(one for each method). We can see that the rules 

generated using the pipeline method cannot extract all 

atomic statements, hence the occurrence of the 

“incorrect number of statements” fault. On the other 

hand, the one generated from the code generation 

method has an object that is a combination of two 

conditions, estuary trading and navigation close to 

ports, hence the occurrence of the “incorrect 

representation of object” fault. 

We also note the occurrence of faults in each clause. 

From that data, we found that there are several clauses 

represented perfectly. i.e. possess zero occurrence of 

error. We present the summary of such clauses in Table 

19. 

It can be seen in Table 14 that in the pipeline method, 

there are 7 clauses without the occurrence of error. On 

the other hand, in the code generation method, there are 

3 clauses without the occurrence of error. This supports 

the results in Table 17, where logic rules produced by 

the pipeline method have better accuracy, precision and 

recall scores. 

We made some observations regarding the error that 

occurred in the logic rules. The first one is related to the 

most frequently occurring error, that is, Fault 1 or 

incorrect prerequisite. From Figure 8, we can see that 
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this type of error occurred 53 times in logic rules 

produced by the pipeline method and 70 times in the 

ones produced by code generation. We argue that this 

error is the most prevalent because many of the 

prerequisites in the clause are implicit. The implicit 

nature of the prerequisites makes them 

indistinguishable from other parts of the clause. Based 

on this fact, the prompt given to LLM tends to rely on 

LLM’s internal knowledge to identify the prerequisite. 

This leads to many occurrences of this category of error, 

and in turn, also affects the overall precision and recall 

score. 

Table 18. Comparison of logic rules 

Original text 

The power demand has to be determined for the following 

operating conditions: 

— navigation at sea 

— estuary trading and navigation close to port 

— emergency power supply 

 

Rules constructed manually 
applicableRule(r14, PrereqObjects):- 
    processPrerequisite(r14, [], [], PrereqObjects). 
 
satisfiesMainRequirement(r14, PrereqObjects):- 

resolveRequirement(r14, [ 
([(F1, power_demand)], determined_for, [(F2, 
navigation_at_sea)]), 
([(F1, power_demand)], determined_for, [(F3, 
estuary_trading)]), 
([(F1, power_demand)], determined_for, [(F2, 
navigation_close_to_port)]), 
([(F1, power_demand)], determined_for, [(F2, 
emergency_power_supply)]) 

], PrereqObjects, []). 
 

Rules generated by pipeline method 
applicableRule(r14, PrereqObjects):- 

processPrerequisite(r14, [], [], PrereqObjects).                 
satisfiesMainRequirement(r14, PrereqObjects):- 

resolveRequirement(r14, [ 
([(F1, power_demand)], has_to_be, [(F2, determined)]) 

], PrereqObjects, []). 
 

Rules generated by code generation method 

applicableRule(r14, PrereqObjects):- 
    processPrerequisite(r14, [], [], PrereqObjects). 
satisfiesMainRequirement(r14, PrereqObjects):- 

resolveRequirement(r14, [ 
([(F1, power_demand)], determined_for, [(F2, 
operating_condition)]), 
([(F2, operating_condition)], includes, [(F3, 
navigation_at_sea)]), 
([(F2, operating_condition)], includes, [(F4, 
estuary_trading_navigation_close_to_port)]), 
([(F2, operating_condition)], includes, [(F5, 
emergency_power_supply)]) 

], PrereqObjects, []). 

Table 19. Evaluation of logic rules obtained using LLM 

Method # of rules with 

zero occurrence of 

error 

Clauses 

Pipeline 7 r1, r9, r11, r12, r18, 

r20, r22  

Code 

Generation 

3 r5, r22, r28 

Another significant observation is the occurrence of the 

“incorrect logical relation” fault. This type of fault 

occurs more frequently, twice the occurrence in the 

logic rules obtained using code generation method. This 

fact indicates that pipeline method is more capable of 

producing representation of logical relation than code 

generation method. We argue that this happens because 

the prompt to obtain logical relation representation in 

the pipeline method is more detailed. It may result in 

more data that is seen by LLM and thus making it easier 

to predict logical relation representation. 

We note interesting facts regarding the occurrence of 

incorrect comparison faults. Contrary to other types of 

faults, this type occurs less frequently in the logic rules 

obtained from the code generation method. We argue 

that this happens because of the training data of GPT 

itself, which includes code written in various 

programming languages. When presented with a task 

related to programming, GPT will use patterns in the 

programming languages it has learned. Those 

programming languages possess similarity with Prolog 

in their comparison-related syntax. Thus, posing the 

task of obtaining logic rules representation as a 

programming task will produce better results when 

comparison is involved.  

4. Conclusions 

This research presents the design of logic rules that can 

be used to represent technical standards as an effort to 

realize automatic compliance checking. Two prompting 

methods that can be used to obtain logic rules from text 

using LLM are also presented. The evaluation suggests 

that the design has already been able to represent 30 

clauses of technical standards and is potentially able to 

represent other clauses as well. Evaluation done to the 

logic rules obtained using LLM suggests that the 

pipeline method can extract a more faithful 

representation. Future works should explore the method 

of extracting facts from design documents to realize an 

end-to-end system of automatic compliance checking. 

It should also explore the effect of various prompting 

techniques and LLMs in improving the faithfulness of 

the representation. Last, future works should explore 

representation that can accommodate tables, equations 

and images. 
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