

511

Available online at website: https://jurnal.iaii.or.id/index.php/RESTI

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 3 (2025) 511 - 517 e-ISSN: 2580-0760

Performance Comparison of Monolithic and Microservices Architectures

in Handling High-Volume Transactions

Mastura Diana Marieska1*, Arya Yunanta2, Harisatul Aulia3, Alvi Syahrini Utami4,

Muhammad Qurhanul Rizqie5
1,2,3,4,5Department of Informatics Engineering, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia

1mastura.diana@ilkom.unsri.ac.id, 2aryayun90@gmail.com, 3haris.aulia404@gmail.com, 4alvisyahrini@ilkom.unsri.ac.id,
5qurhanul.rizqie@ilkom.unsri.ac.id

Abstract

Monolithic and microservices are two distinct approaches for designing and developing applications. However, these

architectures exhibit contrasting characteristics. In monolithic architecture, all components of an application form a unified

entity with closely interconnected parts, whereas microservices decompose an application into independent, lightweight

services that can be developed, deployed, and updated separately. Microservices are often regarded as superior to monolithic

architectures in terms of their performance. This study aims to compare the performance of monolithic and microservices

architectures in handling a high volume of transactions. It is important to observe how the two architectures behave when

handling transactions from a large number of concurrent users. A prototype of an online ticketing system was implemented for

both architectures to enable comparative analysis. The selected performance metrics were response time and error rate. The

experimental results reveal that under high-load conditions, microservices outperform monolithic architectures, demonstrating

36% faster response times and 71% fewer errors. However, under overload conditions—when CPU usage exceeds 90%—the

performance of microservices degrades significantly. This does not imply that microservices cannot handle a large number of

concurrent users but highlights the necessity for enhanced resource management.

Keywords: event-driven architecture; microservice; monolithic; online ticketing system

How to Cite: M. D. Marieska, Arya Yunanta, Harisatul Aulia, Alvi Syahrini Utami, and Muhammad Qurhanul Rizqie, “Performance

Comparison of Monolithic and Microservices Architectures in Handling High-Volume Transactions”, J. RESTI (Rekayasa Sist. Teknol. Inf.) ,

vol. 9, no. 3, pp. 511 - 517, Jun. 2025.

Permalink/DOI: https://doi.org/10.29207/resti.v9i3.6183

Received: November 20, 2024

Accepted: June 8, 2025

Available Online: June 19, 2025

This is an open-access article under the CC BY 4.0 License
Published by Ikatan Ahli Informatika Indonesia

1. Introduction

Monolithic services are a traditional software

architecture where the entire application is a single,

unified entity with closely linked components. This

approach faces significant issues with scalability and

flexibility. Scaling the system to handle higher demand

requires scaling the entire application, which is often

inefficient [1]. Additionally, a failure in one component

can impact the entire application’s performance [2].

In contrast, microservices architecture breaks down an

application into independent, lightweight services that

can be developed, deployed, and updated separately.

This approach enhances flexibility and scalability

compared to monolithic systems [3]. Each microservice

operates independently and communicates through

lightweight protocols like APIs [4]. Scalability is a key

benefit organization seek when shifting to

microservices [5].

The shift from monolithic architectures to

microservices marks a crucial evolution in software

development, driven by demands for greater scalability,

flexibility, and maintainability. This is not a simple

change, especially when coming from traditional

object-oriented systems, because it requires rearranging

a lot of system parts and adding a lot of interactions

between services [6]. Furthermore, the migration

process can be resource-intensive and time-consuming,

often requiring a comprehensive rewrite of existing

applications [7], [8]. The best level of detail for

microservices is crucial to this migration because it

affects application quality and resource use [9].

Comparative research highlights that while monolithic

architectures feature a single and integrated codebase,

https://doi.org/10.29207/resti.v9i3.6183
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 512

microservices offer separate and loosely coupled

services [10]. Microservices provide improved

scalability, agility, and independent service

deployment, leading to enhanced performance [11].

Transitioning to microservices can improve stability,

performance, and scalability, and promote more

efficient resource use [12], [13]. One of the primary

advantages of microservices is their ability to scale

independently, which can significantly enhance

performance under high demand. As a result, while

monolithic applications might exhibit lower average

latency for specific features, microservices often deliver

superior performance overall [14].

To effectively manage systems that experience high

performance demands due to a large number of

concurrent users, it is crucial to conduct case studies

that simulate such high-traffic environments. These

studies are essential for assessing how well systems

handle extensive user interactions and transaction loads,

providing insights into their scalability and reliability

under significant stress.

An illustrative example is an online ticketing system

designed to handle large-scale events, such as concerts

at expansive venues. Such systems must efficiently

manage a high volume of transactions and simultaneous

user access, highlighting the need for robust

performance capabilities. Selling concert tickets online

offers significant convenience compared to offline

sales, which may involve long queues and large crowds.

However, online ticket sales can generate extremely

high traffic, with thousands of tickets potentially being

sold within minutes.

Several other studies have compared monolithic and

microservices architectures. One study [15] focuses on

scalability, concluding that monolithic is more suitable

for systems that do not require handling a large number

of concurrent users. Another study [16], emphasized

performance aspects of database usage, concluding that

the latency of microservices database access is higher

than monolithic. Another study [17] details the

challenges encountered when migrating from

monolithic to microservices.

Unlike other research, this study compares monolithic

and microservices architectures to evaluate which one

provides better performance and reliability for systems

that handle a lot of transactions and multiple users

interacting at the same time. The performance aspect

will be analyzed by average and percentile 90 response

time. The reliability aspect will be analyzed by error

rate. By analyzing an online ticketing system designed

for large-scale events, the study aims to determine how

each architecture handles the demands of high-volume

transaction processing and user access, ultimately

providing insights into their effectiveness in managing

such performance-intensive scenarios.

2. Methods

This section will explain the research methods

employed in this study, focusing on the online ticketing

system as the primary object of analysis. We will

explore two distinct architectural approaches: monolith

implementation and microservice implementation.

Each approach will be examined to understand its

structure, design principles, and operational

characteristics.

2.1 Online Ticketing System

E-tickets, digital versions of traditional paper tickets for

events, are becoming popular for their convenience and

efficiency. Purchased online and stored on mobile

devices, they eliminate the need for physical tickets and

streamline access to events [18] . E-tickets simplify

purchasing, reduce fraud, and enhance user experience

with immediate access and updates. They also integrate

with mobile apps for real-time notifications and easy

transfers [18], [19].

The online ticketing system has been selected for this

case study due to the significant transaction volume it

must handle. For instance, during a major concert at a

large stadium with online ticket sales, the system must

efficiently process a large number of transactions in a

very short period. This scenario highlights the need for

a highly efficient and resilient system capable of

managing rapid and numerous ticket purchases

seamlessly, thereby ensuring a smooth and reliable

experience for all users.

In this study, the online ticketing system to be

developed will incorporate several key features,

including the ability to view available tickets, purchase

tickets, and process payments. Figure 1 shows a system

flow design between key features. Additionally, the

system will provide functionality for processing ticket

cancellations within a specified time period.

Figure 1. System Flows

This study employs a technology stack consisting of

Go, PostgreSQL, Redis, and Apache Kafka. Go is used

for its efficient concurrency and performance,

PostgreSQL for robust relational data management,

Redis for rapid in-memory data access and caching, and

Kafka for real-time data streaming and processing.

2.2 Monolith Implementation

Monolithic services represent a conventional software

architecture in which the entire application is developed

as a single, unified entity. This design integrates all

components into one cohesive system, which poses

significant challenges for scalability and flexibility. In

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 513

a monolithic implementation, the system utilizes three

components on the server: the web service, which is the

monolith itself; a cache for temporary data storage; and

a database for permanent data storage. Figure 2

illustrates interactions between three components. All

features of the e-ticketing system are integrated into a

single web service, which is the monolithic application.

Figure 2. Online Ticketing System Design on Monolith

2.3. Microservice Implementation

Microservice is an architectural style where a system is

divided into small, independently deployable services,

each responsible for a specific function. This approach

contrasts with monolithic systems by enhancing

scalability and flexibility but introduces challenges in

communication and management.

In a microservice implementation, the single web

service is divided into multiple components based on

business domains using Domain-Driven Design

(DDD). DDD aligns software architecture with the

business domain by deeply understanding the specific

industry and creating a domain model that addresses its

complexities and needs [20], [21]. This approach results

in distinct services such as Category Service, Order

Service, and Scheduler Service. Figure 3 illustrates

interaction between components and services in

microservices.

Figure 3. Online Ticketing System Design on Microservices

Category Service is responsible for managing the

business logic related to ticket categories, including

detailed category information and the remaining

quantity of tickets available within each category. Order

Service handles the business logic associated with ticket

reservations, such as processing ticket bookings and

paying for reservations of tickets. Lastly, the Scheduler

Service is responsible for managing schedules to

determine when a reservation will be cancelled in

accordance with predefined deadlines.

In this research, implemented microservices use an

event-driven for architecture design. Event-driven

architecture (EDA) is a design pattern where system

components communicate through events rather than

direct interactions. This approach allows for a

decoupled, flexible system that enhances scalability and

responsiveness [22]-[24]. Asynchronous

communication is supported by EDA, which lets

components work separately and be easily changed

without affecting the system [25].

Event-driven architecture does not interact directly with

other services but instead maintains local copies of their

data. This often leads to data duplication and requires

synchronization by listening for changes, such as

additions or modifications, in other services. The

following is an implementation of event-driven

architecture in this research.

Figure 4. System Flow Design of Create Order Event

Figure 5. System Flow Design of After Create Order Event

Figure 4 illustrates the process of order creation, where

the order service sends an event message to a message

queue. Subsequently, other services, such as the

scheduler and category services, capture the event data

related to the order creation.

Following this, Figure 5 depicts a follow-up event

focused on data synchronization post-order creation.

This process involves synchronizing relevant data,

specifically the ticket quantity. It’s important to note

that only the owner service has the authority to update

its domain data, ensuring data integrity and proper

access control.

Figure 6. System Flow Design of Complete Order Event

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 514

Furthermore, Figure 6 illustrates the process of

completing order payment. During this stage, the

service sends an event message to the message queue,

which is then captured by the service scheduler. This

allows the scheduler to cancel any pending order

cancellations.

Figure 7. System Flow Design of Cancel Order Event

Figure 8. System Flow Design of After Cancel Order Event

Lastly, Figure 7 illustrates the order cancellation

process. In this phase, the service scheduler sends an

event message to the message queue, which is captured

by the order service to initiate a status update.

Subsequently, the order service sends another event

message to the message queue, which the category

service captures to update the ticket quantity

accordingly. Also, Figure 8 illustrates the process that

follows order cancellation, specifically focusing on the

data synchronization process. This step ensures that all

relevant systems are updated to reflect the changes

resulting from the canceled order.

2.4 Performance Metric

Response time and software error rate are key metrics

in software engineering that significantly impact

application performance and reliability. While response

time measures the speed at which a system provides

feedback, the error rate reflects the frequency of defects

within the software. Alongside response time, the P(90)

metric, or the 90th percentile response time, measures

the threshold within which 90% of requests are

completed.

The 90th percentile provides a more reliable

representation of system performance under high-load

condition, reducing the influence of extreme outliers

[26]. These metrics provide insight into user

experience, indicating how many users experience

slower response times during peak loads. The software

error rate, specifically, indicates how often defects

occur in systems.

2.5 Research Limitations and Managerial Implications

There are several limitations in this study, particularly

related to the hardware and the developed testing

application. The online ticketing system created is a

prototype focused on the implementation of services

and the flow of each event. This system does not have a

GUI and has not been tested with real users. Virtual

users were created using Grafana K6.

Hardware used for performance testing was a

consumer-grade computer, with specifications detailed

in the subchapter Test Configuration. This may differ

from real-world cases where servers supporting high-

performing applications would undoubtedly have high

specifications with significant RAM capacity.

However, testing with a standard consumer-grade

computer is considered sufficient in the context of

comparing the performance of the two architectures.

2.6 Test Configuration

Load testing is a critical component of performance

evaluation, aimed at determining how a system

performs under anticipated user traffic. Its primary

goals are to identify potential bottlenecks, ensure

system stability, and confirm that the application

maintains performance levels under expected loads.

Grafana k6 is an open-source load testing tool designed

to assess application performance effectively. It enables

developers to simulate user interactions and evaluate

how applications cope with different load conditions.

This tool is particularly useful for ensuring sustained

high performance throughout the application's lifecycle

[27].

The testing methodology involves issuing requests via

Grafana K6 for a duration of 30 seconds, simulating the

complete ticketing process, including viewing tickets,

ordering, and making payments. Furthermore, the test

incorporates a failure scenario in which 1/3 of the

transactions are simulated to fail due to non-payment.

In performance testing, "concurrent users" is a key

metric for assessing how well a system manages

simultaneous interactions. These are virtual users

created to interact with the system concurrently during

a load test. Tools like k6 facilitate the simulation and

management of these virtual users, enabling

comprehensive stress testing under various load

conditions.

When multiple virtual users operate simultaneously,

they generate a significant volume of requests,

challenging the system's capacity to handle and process

them effectively. This approach accurately reflects real-

world scenarios, such as peak usage periods when

numerous users access the application at once.

Requests Per Second (RPS) is a crucial performance

metric that quantifies how many requests a server or

service can handle in one second. It is vital for assessing

the efficiency and scalability of web applications, APIs,

and networked services. A clear understanding of RPS

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 515

enables developers to optimize user experience and

allocate resources more effectively. In this research, we

tested the system with concurrent user levels of 50, 100,

150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,

and 700 to evaluate its performance under varying

loads.

This approach allows us to assess how well the system

handles increasing stress and identify any performance

issues. The performance test was conducted on a laptop

configured for thorough evaluation under varying loads,

featuring an Intel Core i5-8350U processor, 24 GB of

RAM, and Fedora 40 as the operating system.

3. Results and Discussions

This section will present the test results, followed by a

discussion of the findings and their implications. We

will analyze the outcomes of the performance tests

conducted on the e-ticketing system, comparing the

results between the monolith and microservice

implementations. Finally, we will draw conclusions

based on the insights gained from the analysis.

3.1 Test Results

We conducted a test within a defined operational

environment specifically configured for load testing,

ensuring that no other operations were running

concurrently. This test was carried out over five

iterations to enhance the consistency and reliability of

the results. Following the completion of all iterations,

we averaged the outcomes to construct a comprehensive

measurement that accurately reflects the performance

characteristics of the configuration under investigation.

This methodology strengthens the validity of our

findings by minimizing the influence of potential outlier

results.

The collected data includes a variety of performance

metrics, such as Requests Per Second (RPS), which is

measured in requests per second (req/s), average

response time, the 90th percentile response time (P90)

expressed in milliseconds (ms), and the error rate

represented as a percentage.

Here is the format of the test results that will be utilized

later, as illustrated in Table 1. The upper section

presents the results for the monolithic architecture,

while the lower section outlines those for the

microservices architecture.

Table 1. Load Test Result Format

User RPS Avg P(90) Error Rate

50
x1 x2 x3 x4

y1 y2 y3 y4

Figure 9 shows a comparison of the results based on the

response time metrics, specifically the average and the

90th percentile (P90).

Based on the average and 90th percentile (P90) metrics,

the graph shows that the microservices architecture has

a faster response time than the monolithic architecture

at first. As the number of virtual users increases, the

response time metrics rise; however, there are several

fluctuations that will be addressed in the subsequent

discussion session.

Figure 9. Response Time Graph Comparison

Figure 10. Error Rate Graph Comparison

Table 2. Load Test Result

User RPS Avg P(90) Error Rate

50
471 45 69 0.3

453 45 89 0.4

100
699 80 177 0.5

633 82 200 0.5

150
764 130 284 0.8

718 121 304 0.5

200
736 203 542 1.3

735 173 486 0.6

250
649 327 896 1.3

711 240 682 0.6

300
700 357 1099 2.3

735 290 870 0.7

350
661 466 1242 4.1

742 348 1030 0.7

 581 614 1753 6.1

400 737 433 1244 1.5

 603 675 1964 4.5

450 797 431 1232 0.9

 613 699 1676 4.7

500 680 599 1716 2.3

 718 673 1332 5.94

550 657 696 1974 4

 638 859 2470 6.8

600 582 899 2376 7.4

 818 731 1346 5.6

650 516 1102 3318 13.2

 651 986 2070 7.6

700 588 1049 3252 13.7

Based on the error rate metric, a comparison graph of

the results obtained, is shown in Figure 10. The graph

depicts the error rates derived from the test results,

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 516

demonstrating that microservices generally yield lower

error rates compared to monolithic architectures.

However, it is important to note that fluctuations occur

at certain points within the data.

Furthermore, the results of the tests and comparisons

are presented in tabular format in Table 2. Based Table

2, the lowest recorded average response time for both

microservices and monolithic architectures is 45 ms.

The lowest p90 response time is 69 ms for the monolith

and 89 ms for the microservices. Regarding error rates,

the monolithic architecture shows a minimum error rate

of 0.3%, while the microservices exhibit a minimum

error rate of 0.4%. Furthermore, the maximum average

response time for the monolith is 986 ms, compared to

1.1 s for the microservices. The maximum p90 response

time for the monolith is 2.5 s, while it is 3.3 s for the

microservices. Finally, the maximum error rate for the

monolithic architecture is 7.6%, whereas the

microservices demonstrate a maximum error rate of

13%.

3.2 Discussions

Based on the results of the experiments conducted,

significant changes were observed in each scenario

involving varying numbers of concurrent users,

particularly when the number of users exceeded 450.

The data revealed an irregular pattern of fluctuations,

accompanied by noticeable spikes.

These fluctuations stem from limited computing

resources, especially the CPU. During testing, CPU

utilization reached an average of 90%, indicating that

the system was operating at its maximum capacity. This

situation led to slower response times during the testing

process and an increase in errors.

The impact of these fluctuations is even more

pronounced in a microservices architecture. This model

typically consumes more resources than a monolithic

architecture, as each microservice can operate multiple

instances, including services, databases, and message

brokers. As a result, with more components functioning

simultaneously, CPU demand rises, which can

negatively affect performance as the number of users

increases.

In terms of response time, when the number of

concurrent users is 450 or fewer, the microservices

architecture demonstrates superior performance.

Specifically, it is 36% faster than the monolith in

average response time and 56% faster in the p90 metric.

However, when there are more than 450 users at the

same time, the response time for microservices goes up.

In the p90 metric, it takes 25% longer for microservices

to respond than for monoliths, and it takes 10% longer

on average.

Regarding error rates, when the number of concurrent

users is 450 or more, microservices achieve a 71%

lower error rate compared to the monolith.

Nevertheless, in scenarios with over 450 users, the error

rate for microservices rises, becoming 35% higher than

that of the monolith.

The findings of this study are consistent with one of the

findings in another study [15], specifically regarding

scalability limitations that contribute to the degradation

of application performance in microservices

architecture. A microservices requires more resources

than a monolithic architecture, as it can run multiple

instances in parallel. However, this capability can lead

to a drastic decline in application performance in high-

load environment. The test result indicates that when

the number of concurrent users surpasses 450, there is

noticeable rise in error rates and an increase in response

time.

4. Conclusions

The results indicate that microservices architecture

excels in both performance and error rates under

moderate loads. While it is designed to manage high

traffic, challenges related to resource limitations and

communication overhead become apparent as load

increases. This does not imply that microservices

cannot handle a high number of users but highlights the

necessity for enhanced resource management.

Therefore, ongoing optimization and monitoring efforts

are crucial to ensuring optimal performance during

periods of increased user activity.

Acknowledgements

The research of this article was funded by DIPA of the

Public Service Agency of Universitas Sriwijaya 2024.

SP DIPA number: 023.17.2.677515/2024, on

November 24th, 2023. In accordance with the Rector’s

Decree number: 0013/UN9/LP2M.PT/2024, on May,

20th, 2024.

References

[1] R. Bolscher and M. Daneva, “Designing software architecture

to support continuous delivery and DevOps: A systematic

literature review,” in ICSOFT 2019 - Proceedings of the 14th

International Conference on Software Technologies,

SciTePress, 2019, pp. 27–39. doi:

10.5220/0007837000270039.

[2] F. H. Khoso, A. Lakhan, A. A. Arain, M. A. Soomro, S. Z.

Nizamani, and K. Kanwar, “A Microservice-Based System

for Industrial Internet of Things in Fog-Cloud Assisted

Network”, Eng. Technol. Appl. Sci. Res., vol. 11, no. 2, pp.

7029–7032, Apr. 2021. https://doi.org/10.48084/etasr.4077

[3] F. Dai, G. Liu, X. Xu, Q. Mo, Z. Qiang, and Z. Liang,

“Compatibility checking for cyber‐physical systems based on

microservices,” Softw Pract Exp, vol. 52, no. 11, pp. 2393–

2410, Nov. 2022, doi: 10.1002/spe.3131.

[4] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with

microservices: A systematic mapping study,” Journal of

Systems and Software, vol. 150, pp. 77–97, Apr. 2019, doi:

10.1016/j.jss.2019.01.001.

[5] S. Hassan, R. Bahsoon, and R. Buyya, “Systematic Scalability

Analysis for Microservices Granularity Adaptation Design

Decisions,” Softw Pract Exp, 2022, 52(6): 1378–1401, doi:

10.1002/spe.3069.

[6] J. H. Duarte Correia and A. R. Silva, “Identification of

Monolith Functionality Refactorings for Microservices

Marieska et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 517

Migration,” Softw Pract Exp, 2022, 52(12): 2664–2683, doi:

10.1002/spe.3141.

[7] R. Gebler, “Supporting Regional Pandemic Management by

Enabling Self-Service Reporting—A Case Report,” PLoS

One, 2024, Jan 31;19(1):e0297039, doi:

10.1371/journal.pone.0297039.

[8] J. Kazanavičius and D. Mažeika, “The Evaluation of

Microservice Communication While Decomposing

Monoliths”, Comput. Inform., vol. 42, no. 1, pp. 1–36, May

2023. https://doi.org/10.31577/cai_2023_1_1

[9] F. H. Vera-Rivera, C. Gaona, and H. Astudillo, “Defining and

measuring microservice granularity—a literature overview,”

PeerJ Comput Sci, vol. 7, p. e695, Sep. 2021, doi:

10.7717/peerj-cs.695.

[10] B. Salles and J. Cunha, "Visually-Assisted Decomposition of

Monoliths to Microservices," 2023 IEEE Symposium on

Visual Languages and Human-Centric Computing

(VL/HCC), Washington, DC, USA, 2023, pp. 293-295, doi:

10.1109/VL-HCC57772.2023.00057.

[11] H.-P. Huang, Y.-Y. Fanjiang, C.-H. Hung, H.-F. Tsai, and B.-

H. Lin, “Evaluation of a Smart Intercom Microservice System

Based on the Cloud of Things,” Electronics (Basel), 2023, vol

12, no. 11 p. 2406, doi: 10.3390/electronics12112406.

[12] S. Hassan et al., “From Monolith to Microservices: Software

Architecture for Autonomous UAV Infrastructure

Inspection,” Softw Pract Exp, vol. 52, 2022, doi:

10.14569/ijacsa.2017.081236.

[13] J. Kazanavicius et al., “Microservice Identification by

Partitioning Monolithic Web Applications Based on Use-

Cases,” Softw Pract Exp, 2022, doi: 10.1002/spe.3141.

[14] A. J. Lauwren, “Microservice and Monolith Performance

Comparison in Transaction Application,” Proxies Jurnal

Informatika, 2024, doi: 10.24167/proxies.v5i2.12447.

[15] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic

vs. Microservice Architecture: A Performance and Scalability

Evaluation,” IEEE Access, vol. 10, pp. 20357–20374, 2022,

doi: 10.1109/ACCESS.2022.3152803.

[16] A. Barczak and M. Barczak, “Performance comparison of

monolith and microservices based applications.”, 25th World

Multi-Conference on Systemics, Cybernetics and Informatics,

WMSCI 2021, vol. 1, pp. 120–125. International Institute of

Informatics and Systemics, IIIS.

[17] M. Seedat, Q. Abbas, and N. Ahmad, “Systematic Mapping

of Monolithic Applications to Microservices Architecture,”

Sep. 2023, [Online]. Available:

http://arxiv.org/abs/2309.03796

[18] C. H. Kristantyo, I. A. Putranto, E. S. Soegoto, R. Setiawan,

and R. Jumansyah, “Impact of E-Ticketing Application on

Bus Transportation in Bandung,” Kne Social Sciences, 2020,

doi: 10.2991/aebmr.k.200108.008.

[19] N. Bumanis, G. Vitols, I. Arhipova, and I. Mozga, “Mobile

Ticket Lifecycle Management: Case Study of Public

Transport in Latvia,” 2017, doi:

10.22616/erdev2017.16.n015.

[20] J. Jordanov and S. K. Jaiswal, “Domain Driven Design

Approaches in Cloud Native Service Architecture,”

International Journal of Innovative Research in Engineering

\& Management, 2023, doi: 10.18421/tem124-09.

[21] S. K. Jaiswal, “Domain-Driven Design (DDD)- Bridging the

Gap Between Business Requirements and Object-Oriented

Modeling,” International Journal of Innovative Research in

Engineering \& Management, 2024, doi:

10.55524/ijirem.2024.11.2.16.

[22] R. Mikkilineni, “A New Class of Intelligent Machines With

Self-Regulating, Event-Driven Process Flows for Designing,

Deploying, and Managing Distributed Software

Applications,” 2023, doi: 10.20944/preprints202311.1104.v1.

[23] K. Farias and L. Lazzari, “Event-Driven Architecture and

REST Architectural Style: An Exploratory Study on

Modularity,” Journal of Applied Research and Technology,

2023, doi: 10.22201/icat.24486736e.2023.21.3.1764.

[24] A. Rahmatulloh, F. Nugraha, R. Gunawan, and I. Darmawan,

“Event-Driven Architecture to Improve Performance and

Scalability in Microservices-Based Systems,” 2022, doi:

10.1109/icadeis56544.2022.10037390.

[25] Ayoubi, “An Event-Driven Service Oriented Architecture

Approach for E-Governance Systems,” Kjet, 2019, doi:

10.31841/kjet.2021.1.

[26] R. Bhattacharya and T. Wood, “BLOC: Balancing Load with

Overload Control In the Microservices Architecture,” in 2022

IEEE International Conference on Autonomic Computing and

Self-Organizing Systems (ACSOS), 2022, pp. 91–100. doi:

10.1109/ACSOS55765.2022.00027.

[27] K. G. Sukadharma, “Implementasi CI/CD Pada Microservices

Untuk Meningkatkan Availability Pada Pemrosesan Big

Data,” Jeliku (Jurnal Elektronik Ilmu Komputer Udayana),

2024, doi: 10.24843/jlk.2023.v12.i03.p12.

https://doi.org/10.31577/cai_2023_1_1

