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Abstract  

Monolithic and microservices are two distinct approaches for designing and developing applications. However, these 

architectures exhibit contrasting characteristics. In monolithic architecture, all components of an application form a unified 

entity with closely interconnected parts, whereas microservices decompose an application into independent, lightweight 

services that can be developed, deployed, and updated separately. Microservices are often regarded as superior to monolithic 

architectures in terms of their performance. This study aims to compare the performance of monolithic and microservices 

architectures in handling a high volume of transactions. It is important to observe how the two architectures behave when 

handling transactions from a large number of concurrent users. A prototype of an online ticketing system was implemented for 

both architectures to enable comparative analysis. The selected performance metrics were response time and error rate. The 

experimental results reveal that under high-load conditions, microservices outperform monolithic architectures, demonstrating 

36% faster response times and 71% fewer errors. However, under overload conditions—when CPU usage exceeds 90%—the 

performance of microservices degrades significantly. This does not imply that microservices cannot handle a large number of 

concurrent users but highlights the necessity for enhanced resource management. 
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1. Introduction  

Monolithic services are a traditional software 

architecture where the entire application is a single, 

unified entity with closely linked components. This 

approach faces significant issues with scalability and 

flexibility. Scaling the system to handle higher demand 

requires scaling the entire application, which is often 

inefficient [1]. Additionally, a failure in one component 

can impact the entire application’s performance [2]. 

In contrast, microservices architecture breaks down an 

application into independent, lightweight services that 

can be developed, deployed, and updated separately. 

This approach enhances flexibility and scalability 

compared to monolithic systems [3]. Each microservice 

operates independently and communicates through 

lightweight protocols like APIs [4]. Scalability is a key 

benefit organization seek when shifting to 

microservices [5]. 

The shift from monolithic architectures to 

microservices marks a crucial evolution in software 

development, driven by demands for greater scalability, 

flexibility, and maintainability. This is not a simple 

change, especially when coming from traditional 

object-oriented systems, because it requires rearranging 

a lot of system parts and adding a lot of interactions 

between services [6]. Furthermore, the migration 

process can be resource-intensive and time-consuming, 

often requiring a comprehensive rewrite of existing 

applications [7], [8]. The best level of detail for 

microservices is crucial to this migration because it 

affects application quality and resource use [9]. 

Comparative research highlights that while monolithic 

architectures feature a single and integrated codebase, 
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microservices offer separate and loosely coupled 

services [10]. Microservices provide improved 

scalability, agility, and independent service 

deployment, leading to enhanced performance [11]. 

Transitioning to microservices can improve stability, 

performance, and scalability, and promote more 

efficient resource use [12], [13]. One of the primary 

advantages of microservices is their ability to scale 

independently, which can significantly enhance 

performance under high demand. As a result, while 

monolithic applications might exhibit lower average 

latency for specific features, microservices often deliver 

superior performance overall [14].  

To effectively manage systems that experience high 

performance demands due to a large number of 

concurrent users, it is crucial to conduct case studies 

that simulate such high-traffic environments. These 

studies are essential for assessing how well systems 

handle extensive user interactions and transaction loads, 

providing insights into their scalability and reliability 

under significant stress. 

An illustrative example is an online ticketing system 

designed to handle large-scale events, such as concerts 

at expansive venues. Such systems must efficiently 

manage a high volume of transactions and simultaneous 

user access, highlighting the need for robust 

performance capabilities. Selling concert tickets online 

offers significant convenience compared to offline 

sales, which may involve long queues and large crowds. 

However, online ticket sales can generate extremely 

high traffic, with thousands of tickets potentially being 

sold within minutes.  

Several other studies have compared monolithic and 

microservices architectures. One study [15] focuses on 

scalability, concluding that monolithic is more suitable 

for systems that do not require handling a large number 

of concurrent users. Another study [16], emphasized 

performance aspects of database usage, concluding that 

the latency of microservices database access is higher 

than monolithic. Another study [17] details the 

challenges encountered when migrating from 

monolithic to microservices.  

Unlike other research, this study compares monolithic 

and microservices architectures to evaluate which one 

provides better performance and reliability for systems 

that handle a lot of transactions and multiple users 

interacting at the same time. The performance aspect 

will be analyzed by average and percentile 90 response 

time. The reliability aspect will be analyzed by error 

rate. By analyzing an online ticketing system designed 

for large-scale events, the study aims to determine how 

each architecture handles the demands of high-volume 

transaction processing and user access, ultimately 

providing insights into their effectiveness in managing 

such performance-intensive scenarios. 

2. Methods 

This section will explain the research methods 

employed in this study, focusing on the online ticketing 

system as the primary object of analysis. We will 

explore two distinct architectural approaches: monolith 

implementation and microservice implementation. 

Each approach will be examined to understand its 

structure, design principles, and operational 

characteristics. 

2.1 Online Ticketing System 

E-tickets, digital versions of traditional paper tickets for 

events, are becoming popular for their convenience and 

efficiency. Purchased online and stored on mobile 

devices, they eliminate the need for physical tickets and 

streamline access to events [18] . E-tickets simplify 

purchasing, reduce fraud, and enhance user experience 

with immediate access and updates. They also integrate 

with mobile apps for real-time notifications and easy 

transfers [18], [19]. 

The online ticketing system has been selected for this 

case study due to the significant transaction volume it 

must handle. For instance, during a major concert at a 

large stadium with online ticket sales, the system must 

efficiently process a large number of transactions in a 

very short period. This scenario highlights the need for 

a highly efficient and resilient system capable of 

managing rapid and numerous ticket purchases 

seamlessly, thereby ensuring a smooth and reliable 

experience for all users. 

In this study, the online ticketing system to be 

developed will incorporate several key features, 

including the ability to view available tickets, purchase 

tickets, and process payments. Figure 1 shows a system 

flow design between key features. Additionally, the 

system will provide functionality for processing ticket 

cancellations within a specified time period. 

 
Figure 1. System Flows 

This study employs a technology stack consisting of 

Go, PostgreSQL, Redis, and Apache Kafka. Go is used 

for its efficient concurrency and performance, 

PostgreSQL for robust relational data management, 

Redis for rapid in-memory data access and caching, and 

Kafka for real-time data streaming and processing. 

2.2 Monolith Implementation 

Monolithic services represent a conventional software 

architecture in which the entire application is developed 

as a single, unified entity. This design integrates all 

components into one cohesive system, which poses 

significant challenges for scalability and flexibility. In 
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a monolithic implementation, the system utilizes three 

components on the server: the web service, which is the 

monolith itself; a cache for temporary data storage; and 

a database for permanent data storage. Figure 2 

illustrates interactions between three components. All 

features of the e-ticketing system are integrated into a 

single web service, which is the monolithic application. 

 

Figure 2. Online Ticketing System Design on Monolith 

2.3. Microservice Implementation 

Microservice is an architectural style where a system is 

divided into small, independently deployable services, 

each responsible for a specific function. This approach 

contrasts with monolithic systems by enhancing 

scalability and flexibility but introduces challenges in 

communication and management. 

In a microservice implementation, the single web 

service is divided into multiple components based on 

business domains using Domain-Driven Design 

(DDD). DDD aligns software architecture with the 

business domain by deeply understanding the specific 

industry and creating a domain model that addresses its 

complexities and needs [20], [21]. This approach results 

in distinct services such as Category Service, Order 

Service, and Scheduler Service. Figure 3 illustrates 

interaction between components and services in 

microservices. 

 

 
Figure 3. Online Ticketing System Design on Microservices 

Category Service is responsible for managing the 

business logic related to ticket categories, including 

detailed category information and the remaining 

quantity of tickets available within each category. Order 

Service handles the business logic associated with ticket 

reservations, such as processing ticket bookings and 

paying for reservations of tickets. Lastly, the Scheduler 

Service is responsible for managing schedules to 

determine when a reservation will be cancelled in 

accordance with predefined deadlines. 

In this research, implemented microservices use an 

event-driven for architecture design. Event-driven 

architecture (EDA) is a design pattern where system 

components communicate through events rather than 

direct interactions. This approach allows for a 

decoupled, flexible system that enhances scalability and 

responsiveness [22]-[24]. Asynchronous 

communication is supported by EDA, which lets 

components work separately and be easily changed 

without affecting the system [25]. 

Event-driven architecture does not interact directly with 

other services but instead maintains local copies of their 

data. This often leads to data duplication and requires 

synchronization by listening for changes, such as 

additions or modifications, in other services. The 

following is an implementation of event-driven 

architecture in this research. 

 

Figure 4. System Flow Design of Create Order Event 
 

 

Figure 5. System Flow Design of After Create Order Event 

Figure 4 illustrates the process of order creation, where 

the order service sends an event message to a message 

queue. Subsequently, other services, such as the 

scheduler and category services, capture the event data 

related to the order creation.  

Following this, Figure 5 depicts a follow-up event 

focused on data synchronization post-order creation. 

This process involves synchronizing relevant data, 

specifically the ticket quantity. It’s important to note 

that only the owner service has the authority to update 

its domain data, ensuring data integrity and proper 

access control. 

 

Figure 6. System Flow Design of Complete Order Event 
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Furthermore, Figure 6 illustrates the process of 

completing order payment. During this stage, the 

service sends an event message to the message queue, 

which is then captured by the service scheduler. This 

allows the scheduler to cancel any pending order 

cancellations. 

 

Figure 7. System Flow Design of Cancel Order Event  

 

Figure 8. System Flow Design of After Cancel Order Event 

Lastly, Figure 7 illustrates the order cancellation 

process. In this phase, the service scheduler sends an 

event message to the message queue, which is captured 

by the order service to initiate a status update. 

Subsequently, the order service sends another event 

message to the message queue, which the category 

service captures to update the ticket quantity 

accordingly. Also, Figure 8 illustrates the process that 

follows order cancellation, specifically focusing on the 

data synchronization process. This step ensures that all 

relevant systems are updated to reflect the changes 

resulting from the canceled order. 

2.4 Performance Metric 

Response time and software error rate are key metrics 

in software engineering that significantly impact 

application performance and reliability. While response 

time measures the speed at which a system provides 

feedback, the error rate reflects the frequency of defects 

within the software. Alongside response time, the P(90) 

metric, or the 90th percentile response time, measures 

the threshold within which 90% of requests are 

completed.  

The 90th percentile provides a more reliable 

representation of system performance under high-load 

condition, reducing the influence of extreme outliers 

[26]. These metrics provide insight into user 

experience, indicating how many users experience 

slower response times during peak loads. The software 

error rate, specifically, indicates how often defects 

occur in systems.  

2.5 Research Limitations and Managerial Implications 

There are several limitations in this study, particularly 

related to the hardware and the developed testing 

application. The online ticketing system created is a 

prototype focused on the implementation of services 

and the flow of each event. This system does not have a 

GUI and has not been tested with real users. Virtual 

users were created using Grafana K6. 

Hardware used for performance testing was a 

consumer-grade computer, with specifications detailed 

in the subchapter Test Configuration. This may differ 

from real-world cases where servers supporting high-

performing applications would undoubtedly have high 

specifications with significant RAM capacity. 

However, testing with a standard consumer-grade 

computer is considered sufficient in the context of 

comparing the performance of the two architectures.  

2.6 Test Configuration 

Load testing is a critical component of performance 

evaluation, aimed at determining how a system 

performs under anticipated user traffic. Its primary 

goals are to identify potential bottlenecks, ensure 

system stability, and confirm that the application 

maintains performance levels under expected loads. 

Grafana k6 is an open-source load testing tool designed 

to assess application performance effectively. It enables 

developers to simulate user interactions and evaluate 

how applications cope with different load conditions. 

This tool is particularly useful for ensuring sustained 

high performance throughout the application's lifecycle 

[27]. 

The testing methodology involves issuing requests via 

Grafana K6 for a duration of 30 seconds, simulating the 

complete ticketing process, including viewing tickets, 

ordering, and making payments. Furthermore, the test 

incorporates a failure scenario in which 1/3 of the 

transactions are simulated to fail due to non-payment.  

In performance testing, "concurrent users" is a key 

metric for assessing how well a system manages 

simultaneous interactions. These are virtual users 

created to interact with the system concurrently during 

a load test. Tools like k6 facilitate the simulation and 

management of these virtual users, enabling 

comprehensive stress testing under various load 

conditions. 

When multiple virtual users operate simultaneously, 

they generate a significant volume of requests, 

challenging the system's capacity to handle and process 

them effectively. This approach accurately reflects real-

world scenarios, such as peak usage periods when 

numerous users access the application at once. 

Requests Per Second (RPS) is a crucial performance 

metric that quantifies how many requests a server or 

service can handle in one second. It is vital for assessing 

the efficiency and scalability of web applications, APIs, 

and networked services. A clear understanding of RPS 
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enables developers to optimize user experience and 

allocate resources more effectively. In this research, we 

tested the system with concurrent user levels of 50, 100, 

150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 

and 700 to evaluate its performance under varying 

loads. 

This approach allows us to assess how well the system 

handles increasing stress and identify any performance 

issues. The performance test was conducted on a laptop 

configured for thorough evaluation under varying loads, 

featuring an Intel Core i5-8350U processor, 24 GB of 

RAM, and Fedora 40 as the operating system. 

3. Results and Discussions 

This section will present the test results, followed by a 

discussion of the findings and their implications. We 

will analyze the outcomes of the performance tests 

conducted on the e-ticketing system, comparing the 

results between the monolith and microservice 

implementations. Finally, we will draw conclusions 

based on the insights gained from the analysis. 

3.1 Test Results 

We conducted a test within a defined operational 

environment specifically configured for load testing, 

ensuring that no other operations were running 

concurrently. This test was carried out over five 

iterations to enhance the consistency and reliability of 

the results. Following the completion of all iterations, 

we averaged the outcomes to construct a comprehensive 

measurement that accurately reflects the performance 

characteristics of the configuration under investigation. 

This methodology strengthens the validity of our 

findings by minimizing the influence of potential outlier 

results. 

The collected data includes a variety of performance 

metrics, such as Requests Per Second (RPS), which is 

measured in requests per second (req/s), average 

response time, the 90th percentile response time (P90) 

expressed in milliseconds (ms), and the error rate 

represented as a percentage. 

Here is the format of the test results that will be utilized 

later, as illustrated in Table 1. The upper section 

presents the results for the monolithic architecture, 

while the lower section outlines those for the 

microservices architecture. 

Table 1. Load Test Result Format 

User RPS Avg P(90) Error Rate 

50 
x1 x2 x3 x4 

y1 y2 y3 y4 

Figure 9 shows a comparison of the results based on the 

response time metrics, specifically the average and the 

90th percentile (P90).  

Based on the average and 90th percentile (P90) metrics, 

the graph shows that the microservices architecture has 

a faster response time than the monolithic architecture 

at first. As the number of virtual users increases, the 

response time metrics rise; however, there are several 

fluctuations that will be addressed in the subsequent 

discussion session. 

 

Figure 9. Response Time Graph Comparison 

 

Figure 10. Error Rate Graph Comparison 

Table 2. Load Test Result 

User RPS Avg P(90) Error Rate 

50 
471 45 69 0.3 

453 45 89 0.4 

100 
699 80 177 0.5 

633 82 200 0.5 

150 
764 130 284 0.8 

718 121 304 0.5 

200 
736 203 542 1.3 

735 173 486 0.6 

250 
649 327 896 1.3 

711 240 682 0.6 

300 
700 357 1099 2.3 

735 290 870 0.7 

350 
661 466 1242 4.1 

742 348 1030 0.7 

 581 614 1753 6.1 

400 737 433 1244 1.5 

 603 675 1964 4.5 

450 797 431 1232 0.9 

 613 699 1676 4.7 

500 680 599 1716 2.3 

 718 673 1332 5.94 

550 657 696 1974 4 

 638 859 2470 6.8 

600 582 899 2376 7.4 

 818 731 1346 5.6 

650 516 1102 3318 13.2 

 651 986 2070 7.6 

700 588 1049 3252 13.7 

Based on the error rate metric,  a comparison graph of 

the results obtained, is shown in Figure 10. The graph 

depicts the error rates derived from the test results, 
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demonstrating that microservices generally yield lower 

error rates compared to monolithic architectures. 

However, it is important to note that fluctuations occur 

at certain points within the data. 

Furthermore, the results of the tests and comparisons 

are presented in tabular format in Table 2. Based Table 

2, the lowest recorded average response time for both 

microservices and monolithic architectures is 45 ms. 

The lowest p90 response time is 69 ms for the monolith 

and 89 ms for the microservices. Regarding error rates, 

the monolithic architecture shows a minimum error rate 

of 0.3%, while the microservices exhibit a minimum 

error rate of 0.4%. Furthermore, the maximum average 

response time for the monolith is 986 ms, compared to 

1.1 s for the microservices. The maximum p90 response 

time for the monolith is 2.5 s, while it is 3.3 s for the 

microservices. Finally, the maximum error rate for the 

monolithic architecture is 7.6%, whereas the 

microservices demonstrate a maximum error rate of 

13%. 

3.2 Discussions 

Based on the results of the experiments conducted, 

significant changes were observed in each scenario 

involving varying numbers of concurrent users, 

particularly when the number of users exceeded 450. 

The data revealed an irregular pattern of fluctuations, 

accompanied by noticeable spikes. 

These fluctuations stem from limited computing 

resources, especially the CPU. During testing, CPU 

utilization reached an average of 90%, indicating that 

the system was operating at its maximum capacity. This 

situation led to slower response times during the testing 

process and an increase in errors. 

The impact of these fluctuations is even more 

pronounced in a microservices architecture. This model 

typically consumes more resources than a monolithic 

architecture, as each microservice can operate multiple 

instances, including services, databases, and message 

brokers. As a result, with more components functioning 

simultaneously, CPU demand rises, which can 

negatively affect performance as the number of users 

increases. 

In terms of response time, when the number of 

concurrent users is 450 or fewer, the microservices 

architecture demonstrates superior performance. 

Specifically, it is 36% faster than the monolith in 

average response time and 56% faster in the p90 metric. 

However, when there are more than 450 users at the 

same time, the response time for microservices goes up. 

In the p90 metric, it takes 25% longer for microservices 

to respond than for monoliths, and it takes 10% longer 

on average. 

Regarding error rates, when the number of concurrent 

users is 450 or more, microservices achieve a 71% 

lower error rate compared to the monolith. 

Nevertheless, in scenarios with over 450 users, the error 

rate for microservices rises, becoming 35% higher than 

that of the monolith. 

The findings of this study are consistent with one of the 

findings in another study [15], specifically regarding 

scalability limitations that contribute to the degradation 

of application performance in microservices 

architecture. A microservices requires more resources 

than a monolithic architecture, as it can run multiple 

instances in parallel. However, this capability can lead 

to a drastic decline in application performance in high-

load environment. The test result indicates that when 

the number of concurrent users surpasses 450, there is 

noticeable rise in error rates and an increase in response 

time.  

4. Conclusions 

The results indicate that microservices architecture 

excels in both performance and error rates under 

moderate loads. While it is designed to manage high 

traffic, challenges related to resource limitations and 

communication overhead become apparent as load 

increases. This does not imply that microservices 

cannot handle a high number of users but highlights the 

necessity for enhanced resource management. 

Therefore, ongoing optimization and monitoring efforts 

are crucial to ensuring optimal performance during 

periods of increased user activity. 
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