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Abstract   

Facial recognition technology is now advancing quickly and is being used extensively in a number of industries, 

including banking, business, security systems, and human-computer interface. However, existing facial 

recognition models face significant challenges in real-time emotion classification, particularly in terms of 

computational efficiency and adaptability to varying environmental conditions such as lighting and occlusion. 

Addressing these challenges, this research proposes a lightweight, yet effective deep learning model based on 

MobileNetV2 to predict human facial emotions using a camera in real time. The model is trained on the FER-2013 

dataset, which consists of seven emotion classes: anger, disgust, fear, joy, sadness, surprise, and neutral. The 

methodology includes deep learning-based feature extraction, convolutional neural networks (CNN), and 

optimization techniques to enhance real-time performance on resource-constrained devices. Experimental results 

demonstrate that the proposed model achieves a high accuracy of 94.23%, ensuring robust real-time emotion 

classification with a significantly reduced computational cost. Additionally, the model is validated using real-

world camera data, confirming its effectiveness beyond static datasets and its applicability in practical real-time 

scenarios. The findings of this study contribute to advancing efficient emotion recognition systems, enabling their 

deployment in interactive AI applications, mental health monitoring, and smart environments. Real-world camera 

data is also used to evaluate the model, demonstrating its usefulness in real-time applications and its efficacy 

beyond static datasets. The results of this work advance effective emotion identification systems, making it possible 

to use them in smart settings, interactive AI applications, and mental health monitoring. 

Keywords: facial recognition; deep learning, MobileNetV2, CNN, tensorflow 
 

How to Cite: T. Hendrawati and A. Apriliyanti Pravitasari, “Real-time Emotion Recognition Using the MobileNetV2 Architecture”, J. RESTI 

(Rekayasa Sist. Teknol. Inf.), vol. 9, no. 4, pp. 714 - 720, Jul. 2025. 

Permalink/DOI: https://doi.org/10.29207/resti.v9i4.6158 
 

Received: October 31, 2024 

Accepted: July 2, 2025 

Available Online: July 17, 2025 

 

This is an open-access article under the CC BY 4.0 License  
Published by Ikatan Ahli Informatika Indonesia 

                                                                                                

 

1. Introduction  

In computer vision, face recognition has emerged as one 

of the most crucial technologies. It has found 

widespread applications in contactless payments, 

security, access control, healthcare, smart surveillance, 

and personalized services, enabling automated person 

identification or authentication based on facial images 

[1]. Over the past few decades, the rapid advancement 

of deep learning-based methods and the availability of 

large-scale datasets have significantly improved the 

accuracy and robustness of facial recognition systems 

[2]. 

A face recognition system generally consists of three 

main steps: face detection, feature extraction, and face 

matching. Over time, these steps have evolved from 

traditional handcrafted feature-based techniques to 

modern convolutional neural network (CNN)-based 

methods, which have revolutionized the field [1]. CNNs 

are particularly effective in capturing intricate facial 

features, allowing recognition models to perform 

reliably in challenging conditions, such as poor lighting, 

pose variations, occlusions, and facial expressions [3]. 

Despite these advancements, several challenges persist. 

Issues such as pose variations, lighting conditions, 

occlusions (partial face coverage), and privacy concerns 
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continue to pose significant hurdles for researchers. 

Additionally, ethical concerns and bias in facial 

recognition technology have drawn increasing 

attention, necessitating improvements in fairness and 

transparency [4]. To address these issues, researchers 

continue to refine facial recognition models by 

improving accuracy, computational efficiency, and 

real-world adaptability. Among various CNN 

architectures, MobileNet has been specifically designed 

to overcome the high computational costs associated 

with deep learning models. MobileNetV2, created by 

Google researchers, offers a compromise between 

performance and efficiency and is tailored for 

embedded and mobile applications [5]. 

Real-time facial expression categorization is a 

significant face recognition task that is essential to 

intelligent tutoring systems, affective computing, 

mental health monitoring, and human-computer 

interface (HCI). Real-time facial expression recognition 

(FER) has potential uses in a variety of industries, such 

as security, entertainment, customer service, and 

education. However, it is still very difficult to achieve 

great accuracy while preserving computing efficiency, 

especially in situations with limited resources like 

embedded systems and mobile devices [6]. Traditional 

CNN architectures, such as VGG16 and ResNet, 

provide excellent accuracy but are computationally 

intensive, making them unsuitable for real-time 

scenarios. To address these limitations, MobileNetV2 

has been proposed as a highly efficient deep learning 

model that balances computational cost and 

classification performance [7]. MobileNetV2 is perfect 

for edge computing and real-time AI applications 

because it uses depthwise separable convolutions, 

which drastically reduce the number of parameters 

while preserving excellent accuracy. Several studies 

have validated that MobileNetV2 achieves performance 

comparable to larger architectures while consuming 

fewer computational resources, making it a promising 

candidate for real-time facial emotion recognition 

[8],[9],[10]. According to earlier research, 

MobileNetV2 offers a good balance between 

computational efficiency and accuracy [5-8], which 

makes it perfect for real-time deployment on low-

resource devices. This empirical evidence supports its 

implementation in our work by illustrating the efficacy 

of MobileNetV2 for real-time face emotion 

identification, as evidenced by comprehensive 

assessments on the FER-2013 dataset. 

The novelty of this work lies in integrating 

MobileNetV2 for real-time face emotion identification 

with immediate validation utilizing actual camera input. 

In contrast to prior research that concentrated 

exclusively on offline FER-2013 accuracy, our 

implementation evaluates the model's resilience in 

practical, real-time scenarios. This study validates the 

robustness of MobileNetV2 in recognizing human 

emotions accurately and efficiently, making it a feasible 

solution for affective computing, human-computer 

interaction, and real-time AI applications [11], [12]. 

2. Methods 

2.1 Deep learning 

One class of machine learning methods for extracting 

features from data is called deep learning. Artificial 

neural networks are used in deep learning to process big 

datasets with multiple layers of information processing 

stages in a hierarchical architecture that is used for 

feature learning without supervision. Higher-level 

features or components are dictated by lower-level ones 

in deep learning, which computes features or 

hierarchical representations from observational data. In 

deep learning, computer systems are typically trained to 

convert picture pixel values into internal 

representations using sizable datasets. This produces 

internal representations that allow classifiers to identify 

input patterns [12]. 

Multi-layered structures in artificial neural networks are 

represented by the learning technique known as deep 

learning. One machine learning technique called 

representation learning automatically finds and learns 

features from the unprocessed input data. The 

unprocessed data can be used for classification, or 

recognition as it is commonly known. The core 

architecture types in deep learning are recurrent neural 

networks, autoencoders, convolutional neural networks, 

and deep belief networks. Deep learning is still being 

researched since it can manage very big data sources, 

perform novel activation functions, find new 

methodologies, and significantly increase chip 

processing capabilities [11].  

2.2 Convolutional Neural Network 

A kind of neural network focused on deep learning, the 

convolutional neural network has undergone a great 

deal of testing and produced excellent outcomes in real-

world applications. CNN is very useful in the field of 

large-scale video and image recognition. CNN can be 

said to be the most dominant approach for all 

recognition problems. There have been many 

applications of CNN in the industrial field, such as 

Amazon, Facebook, and Google, where CNN is 

typically used to extract house numbers from street 

view images [13], [14]. The CNN workflow is depicted 

in Figure 1.  

From Figure 1, the input image is fed into the network, 

where its features are extracted through convolutional 

layers with ReLU activation functions, detecting 

patterns such as edges and textures. Next, the pooling 

layer reduces feature dimensions while preserving 

important information, improving computational 

efficiency. To extract more complicated features, this 

convolution and pooling process is done several times. 

After the output is flattened into a one-dimensional 

vector, fully connected layers process it, assigning the 

learnt features to categories like neutral, anger, disgust, 

fear, joy, sadness, and surprise. Finally, Softmax layer 

generates probabilities for each class, allowing the 

model to determine the detected object type.  
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Due to CNN's ability to represent each neuron in two 

dimensions, this approach is typically appropriate for 

processing input data in the form of images. The feature 

learning stage and the classification stage are CNN's 

two primary phases. Convolution layers, pooling layers, 

and ReLU (activation function) are all part of the 

feature learning step. The classification stage includes 

prediction, flattening, and fully connected layers. The 

feed-forward and backpropagation processes are the 

two primary functions of CNN [14], [15]. 

 

Figure 1. Workflow of CNN 

2.3. MobileNetV2 

The application of Deep Learning methods has spread 

across various computer vision tasks [16] and one 

general overview of its application is in FER (The Face 

Expression Recognition). With only a minor drop in 

performance, the modifications to the MobileNet design 

can drastically lower computational costs when 

compared to competing Deep Learning techniques for 

recognizing objects. 

MobileNetV2 is an architecture of CNN that is usually 

used to address excessive computing resource needs. 

MobileNet differs from CNN architecture in that it uses 

convolutional layers with filter thicknesses that can 

match the thickness of the input image [17]. 

MobileNetV2 improves model performance on some 

tasks and benchmarks across the spectrum at different 

model sizes [4].  

The linear bottleneck and the shortcut links between 

bottlenecks are the two new elements of MobileNetV2. 

The inner layers may contain the model's capacity to 

convert inputs from lower-level concepts to higher-

level ones, whilst the bottleneck segment comprises 

inputs and outputs between the models. For instance, 

turning pixels into a picture. Faster data training and 

increased accuracy are made possible via shortcuts 

between bottlenecks [4]. In several previous studies, 

MobiExpressNet was able to achieve an accuracy of 

67.96% on the Face Emotions Recognition (FER)-2013 

dataset with a model size of approximately 75,000 

parameters and a computation of 1x10^6 FLOP. Figure 

2 shows the MobileNetV2 workflow.      

 

Figure 2. Workflow of MobileNetV2 

Preprocessing is the first step in Figure 2, where a 128 

× 128 × 3 input image is ready for feature extraction. 

The first stage involves 3×3 convolutional layers with 

ReLU activation, generating 32 feature maps of size 

64×64. These are then processed through additional 

convolutional layers, increasing the depth to 96 feature 

maps of size 32×32, followed by max pooling (2×2) to 

reduce spatial dimensions. The next stage applies 

further convolutions, expanding the depth to 1280 

feature maps with a resolution of 4×4, effectively 

extracting high-level features while maintaining 

computational efficiency. After being flattened, the 

collected characteristics are sent to a fully connected 

layer, which uses a Softmax classifier to map them to 

discrete categories (0 for anger, 1 for disgust, 2 for fear, 

3 for joy, 4 for sadness, 5 for surprise, and 6 for neutral). 

MobileNetV2’s lightweight architecture, using 

depthwise separable convolutions, ensures that the 

  

 nput  onvolutional   RE U Pooling  latten  ully
 onnected

 o tma 
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model achieves high accuracy with minimal 

computational cost, making it suitable for mobile and 

embedded applications. 

The activation function used in this investigation is the 

Rectified Linear Unit, or ReLU. ReLU in the 

MobileNetV2 model is one of the important 

components that support the performance of neural 

networks in recognising patterns from data, such as 

images. Equation 1 illustrates the straightforward 

formula that defines ReLU.  

ReLU(x) = max (0, 𝑥)                     (1) 

This means that if the input is positive, it will be passed 

as is; if it is negative, then the value will be changed to 

zero. All things considered, MobileNetV2's usage of 

ReLU boosts effectiveness and performance while 

maintaining the model's portability and speed for 

mobile applications without compromising accuracy or 

the model's capacity to execute tasks like object 

identification and picture categorization [18] .  

The optimiser used in this research is the Adaptive 

Moment Estimation optimiser or Adam. Adam is an 

optimiser that maintains the learning rate of each weight 

and the average gradient exponentially. Adam is an 

efficient stochastic method that only requires first-order 

gradients with minimal memory requirements.   

A loss function computes the difference between actual 

and expected outputs to determine the loss associated 

with every scenario that a model generates [19]. The 

model is less effective at capturing patterns the higher 

the loss function value. Using the loss function in this 

investigation A loss function used in multi-class 

classification models is called Sparse Categorical Cross 

Entropy [10], [20].  

In this study, the model's performance is assessed using 

the confusion matrix (Table 1). The main components 

of the confusion matrix are False Positives (FP), False 

Negatives (FN), True Positives (TP), and True 

Negatives (TN). We calculate performance metrics 

using precision. How often a model correctly predicts 

the outcome given in Equation 2 is measured using a 

parameter known as accuracy [10], [20]. 

Accuracy = (TP+TN) / (TP+TN + FP+FN)             (2) 

Table 1. The confusion matrix 

Predicted Actual Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

3. Results and Discussions 

The data set used as the training set is the Face 

Emotions Recognition (FER)-2013 data available on 

the Kaggle website. This data consists of grayscale 

facial images sized 48x48 pixels. Each face in the data 

is divided into seven categories according to the 

emotions conveyed by the visible facial expressions. 

The training data used to build the model consists of 

15,958 images. These 7 categories are represented by 

the following numbers: 0 denotes anger, 1 disgust, 2 

fear, 3 joy, 4 sadness, 5 surprise, and 6 neutral. 

3.1 Results 

Before the model is built. Data preprocessing needs to 

be done first. The data preprocessing includes up 

sampling the dataset from 48x48 to 224x224 using bi-

linear interpolation, followed by rescaling the image 

values by multiplying the image values by 1/255 so that 

the image values are in the range of 0 to 1. 

Following the completion of data preparation, the 

model is constructed using MobileNetV2, which is a 

component of the Keras TensorFlow framework. Next, 

tuning is performed on the dense layer using a 

combination of 128-64-7 neurons. Thus, the model to 

be used contains a total of 2,430,663 parameters, with 

2,396,551 parameters being trained and 34,112 

parameters not being trained. Next, model training is 

conducted. 

The model was developed using the Adam Optimizer, a 

total of 25 epochs, using Sparse Categorical 

Crossentropy as the loss function. The training model's 

evaluation results revealed an accuracy of 0.9423. It can 

be said that the model is quite good at facial emotion 

recognition with an accuracy of 0.9423. 

The bounding box and face detection in real-time 

scenarios were implemented using OpenCV before 

passing the face region into the MobileNetV2 model for 

emotion classification, where predictions will be made 

in real-time with a camera, resulting in the following 

outcomes. 

 

Figure 3. Angry facial expression 

The results of real time face emotion recognition were 

tested with samples of people showing angry facial 

expressions. Figure 3's results demonstrate how well the 

model can identify the facial emotions of anger. 

 

Figure 4. Happy facial expressions 

Next, a real time face emotion recognition test was 

conducted on individuals with happy facial expressions. 
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Based on the results in Figure 4, it can be seen that the 

model can recognize happy facial emotions well. 

Figure 5 shows the real-time face emotion recognition 

test on a person with a sad facial expression. The results 

indicate that the model can recognize the sad facial 

emotion well.  

 

Figure 5. Sad facial expressions 

Another trial provided by the facial expression of a 

surprised person. The results were obtained as shown in 

Figure 6. It is indicate that the model can recognize the 

emotion of surprised on faces well. 

 

Figure 6. Expression of surprise 

The following test was conducted with a sample of 

people with disgusted facial expressions. The results 

obtained (Figure 7), indicate that the model can 

recognize the emotion of disgust on faces well. 

 

 

 

 

 

 

Figure 7. Disgusted facial expressions 

In Figure 8, indicate that the model can recognize the 

emotion of fear on faces well. 

 

Figure 8. Fear facial expressions 

The last one was tested with a sample of people with 

normal facial expressions. The results obtained are as 

shown in Figure 9, indicating that the model can 

recognize normal facial emotions well. 

 

Figure 9. Fear facial expressions 

3.2 Discussions 

This study contributes by demonstrating that 

MobileNetV2 achieves high real-time emotion 

recognition accuracy (94.23%) on a resource-

constrained environment, offering a practical solution 

for embedded AI applications in mental health, HCI, 

and smart surveillance systems. As it is derived from 

related performance, this could be more computation-

efficient, important in real application scenarios for 

limited-resource devices, such as a smartphone or on-

board system.  

MobileNetV2 incorporates depth wise separable 

convolutions, which drastically cut down on the number 

of parameters while marginally lowering predictive 

accuracy when compared to conventional CNN models. 

This makes the model suitable for real-time emotion 

recognition without requiring extensive computational 

resources. When tested in realtime using a camera, this 

model can detect various facial expressions in realtime 

with high accuracy results as visualized in Figure 3-9. 

This is in line with the research conducted by Li & Deng 

[21] and Hou, et al [22]. 

However, a few limitations must be acknowledged. 

First is the FER-2013 dataset used in this work; 

grayscale images of small resolution (48x48 pixels) 

may not fully represent complex facial expressions 

from diverse environmental conditions. Second, 

variations in lighting and occlusion challenges are still 

there and would call for more enhancements in data 

augmentation or model architecture for further 

improvements.  

To further evaluate the effectiveness and contribution 

of this study, we compare our results with several recent 

studies that employed deep learning methods for facial 

emotion recognition using the FER-2013 dataset. Table 

2 summarizes the comparison of model architectures, 

datasets, accuracy, and whether real-time testing was 

conducted. 

As illustrated in Table 2, the proposed MobileNetV2 

model achieves higher accuracy than comparable 

methods, while also being validated in real-time 

through camera-based implementation. Unlike previous 

works that primarily focused on offline performance 
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using static datasets, our model's validation in live 

conditions highlights its practical relevance and 

adaptability in real-world environments. This 

constitutes a notable contribution to the domain of 

efficient and deployable facial emotion recognition 

systems.                  

Table 2 The summaries of comparison model architectures 

Study Model  Dataset Accuracy 

Real-time 

Imple-

mentation 

Li & 

Deng 

(2022) 

[21] 

Deep CNN 
FER-

2013 
91.4% No 

Huo et 

al. 

(2023) 

[22] 

Improved 

DSCNN 

FER-

2013 
92.1% No 

Santem

iz et al. 

(2024) 

[23] 

Side-view 

Hybrid CNN 

FER-

2013 
89.5% No 

This 

study 
MobileNetV2 

FER-

2013 + 

Real-time 

input 

94.23% Yes 

 

4. Conclusions 

This study shows how the MobileNetV2 architecture 

balances accuracy and computing efficiency, which 

makes it perfect for problems requiring real-time facial 

expression identification. With an accuracy of 94.23%, 

the suggested model proves to be resilient and flexible. 

Despite the strong results, challenges such as dataset 

limitations and real-world variations require further 

exploration in future studies. The results emphasize the 

significance of ethical considerations in facial 

recognition deployment while also promoting deep 

learning applications in emotional computing and 

human-computer interaction.  

The future work will explore more extensive 

hyperparameter tuning (e.g., learning rate, dropout, and 

batch size) and testing under different lighting, 

occlusion, and expression intensities to improve 

robustness. Future research work can also investigate 

hybrid models that incorporate attention mechanisms or 

transformer-based architectures to improve robustness 

against these types of variations. 
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