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Abstract  

The Indonesian auction, one of the sources of Indonesia's income for Non-Tax State Revenue (PNBP), faces challenges in 

accurately classifying auction objects, limiting revenue optimisation. This research aims to compare the performance of several 

transfer learning architectures on the Indonesian Auction Object Dataset, which includes categories such as Buildings, Cars, 

Motorbikes, and Salvage Materials. Seven pre-trained transfer learning models—MobileNetV2, NASNetMobile, 

EfficientNetV2B0, DenseNet121, Xception, InceptionV3, and ResNet50V2—were evaluated against a baseline model, focusing 

on validation accuracy, model size, and computational efficiency. MobileNetV2, NASNetMobile, DenseNet121, Xception, 

InceptionV3, and ResNet50V2 all achieved 100% validation accuracy, outperforming the baseline model's 96.5% accuracy. 

MobileNetV2 stands out for its efficiency, reaching 100% accuracy in just eight epochs with a compact model size of 11.1 MB. 

In contrast, EfficientNetV2B0 performed poorly on this dataset, achieving only 25% validation accuracy. These findings 

confirm that transfer learning architectures can significantly improve auction object classification accuracy while reducing 

the model size and training time, highlighting the benefit of transfer learning for optimising Indonesian auction systems. 
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1. Introduction  

The Ministry of Finance Regulation [1] defines an 

auction as a public sale of goods aimed at achieving the 

highest possible price, with auction fees charged to the 

seller and/or buyer for each auction conducted. These 

fees contribute significantly to Non-Tax State Revenue 

(PNBP).  which reached IDR 974.24 billion in 2023, 

more than double the IDR 467.68 billion revenue 

generated in 2018 [2]. This substantial growth 

underscores the increasing importance of auctions as a 

revenue collection source and highlights the need for 

continuous improvement in auction management 

practices, as the current business processes still have 

room for enhancement to maximize revenue collection 

[3], [4].  

The increase in non-tax revenue is closely tied to the 

frequency of auctions, which has risen significantly 

since the introduction of the new Indonesian auction 

domain (lelang.go.id) in 2018. Sujak and Rofiq [5] 

highlight that as the frequency of auctions increases, the 

challenge of efficiently classifying diverse auction 

objects becomes more complex, mainly due to the 

limited number of auctioneers available to oversee the 

process. The research also found that inefficiencies in 

auction classification often arise from differing 

interpretations between sellers and regulators. Saputri et 

al. [6] further note that auctioneers focus primarily on 

verifying the formal legal requirements of auction 

requests without assessing the actual condition or 

authenticity of the items. As a result, the responsibility 

for ensuring accurate auction object descriptions falls 

entirely on the seller. These issues underscore the need 

for more robust, automated solutions to enhance 

classification accuracy, optimising the auction system’s 

non-tax revenue. 

Building on these challenges, this research extends 

Sujak and Rofiq's [5] research, which explored AI's 

potential for optimising PNBP through auction fee 

classification in the Indonesian auction system. which 

explored the potential of artificial intelligence (AI) to 

https://doi.org/10.29207/resti.v9i1.6082
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optimise PNBP through auction object classification to 

determine its fees in the Indonesian auction system. 

Their research demonstrated the effectiveness of AI in 

improving auction processes, specifically by leveraging 

a custom Convolutional Neural Network (CNN) model. 

This CNN achieved a validation accuracy of 96.5%, 

with a relatively large model size of 692.4 MB. While 

this performance was promising, there remain several 

areas where further improvements are necessary, 

particularly in achieving higher accuracy and reducing 

the model size. 

The CNNs approach has proven effective in similar 

applications, such as Jareño et al. [7], which utilised 

CNNs to classify fish size and species in Spanish fish 

auctions, and Bobulski and Szymoniak [8] applied 

CNNs to categorise items in Dutch auctions. The 

Indonesian auction system presents unique challenges. 

The dataset used in these auctions includes an object 

that can't be found in another country or auction 

process, that is, salvage materials. A more refined 

approach is needed to enhance the classification 

performance, especially considering that accurate 

classification directly impacts the collection of PNBP, 

one of the revenue sources for the Indonesian 

government. Misclassification of auction objects can 

lead to inaccurate fees imposed, potentially resulting in 

revenue loss for the government. Therefore, optimising 

accuracy is essential for ensuring that the auction 

process contributes effectively to state revenue. 

Additionally, a smaller model size is equally important, 

as it allows for seamless integration into existing 

auction systems, which often have computational and 

storage constraints. A more compact model ensures 

faster processing times, reduces the need for extensive 

hardware resources, and supports deployment in 

environments with limited computational power, such 

as mobile devices or smaller servers. 

In response to these challenges, this research explores 

the application of transfer learning techniques. Transfer 

learning offers significant advantages by leveraging 

knowledge from previously learned tasks [9]. Transfer 

learning also addresses the challenge of insufficient 

training data [10], [11] and significantly reduces the 

time and computational resources required for model 

training [12]. This approach is particularly suitable for 

this case, as the dataset is limited to 250 images per 

category. 

Transfer learning has been widely adopted in various 

image classification tasks, offering the advantage of 

achieving high accuracy even with smaller datasets and 

more efficient model architectures. This technique 

leverages pre-trained models, which have been trained 

on large datasets, and fine-tunes them on specific tasks, 

allowing for rapid and effective adaptation to new 

image classification tasks.  

For instance, Sailaja and VenuGopal [13] demonstrated 

the usability of transfer learning by achieving 100% 

accuracy in Parkinson's Disease detection. Their 

research enhanced the ResNet50V2 model with 

additional dense and dropout layers, allowing it to 

capture more complex features while mitigating 

overfitting. This illustrates how transfer learning can be 

fine-tuned to deliver exceptional results in medical 

diagnostics.  

Similarly, Chen et al. [14] achieved remarkable success 

in plant disease identification by employing a squeeze-

and-excitation MobileNet model with twice transfer 

learning, achieving an accuracy of 99.78%. Kaur et al. 

[10] applied the InceptionV3 model to detect rice leaf 

diseases, achieving 96% accuracy. Their approach 

highlights how transfer learning can be adapted to 

various domains within agriculture, where precise 

identification of plant diseases is crucial for effective 

crop treatment and management. Additionally, Foong 

[15] utilised ResNet50 to detect rotten fruit, achieving 

98.89% accuracy. This further gives another example of 

the effectiveness of transfer learning in food quality 

assessment, where accurate defect detection is essential 

for ensuring product quality. 

Despite the widespread application of transfer learning 

across various domains, there remains limited research 

on its application to auction object classification, 

particularly within the context of the Indonesian auction 

system. This domain presents unique challenges, such 

as classifying various auctioned items with limited 

training data. Exploring transfer learning in this context 

could offer significant benefits, improving the accuracy 

and efficiency of auction object classification while 

addressing the specific needs of the Indonesian 

government to automate the classification process in the 

Indonesian auction system, ensuring that non-tax state 

revenue imposed is accurate and reliable. 

This research aims to fill this gap by applying transfer 

learning techniques to enhance the accuracy of auction 

object classification and reduce model size for seamless 

integration into existing systems. The findings will 

provide practical insights to enhance the efficiency of 

the Indonesian auction system and further optimise its 

contribution to non-tax state revenue. 

2. Research Methods 

This research employed a comparative experimental 

design to evaluate the performance of various transfer 

learning architectures on the Indonesian Auction Object 

Dataset, as used by Sujak and Rofiq [5]. The dataset 

consists of four categories: Buildings, Cars, 

Motorbikes, and Salvage Materials. It has 1000 images 

split into 200 training images and 50 validation images 

per category, each 512x512 pixels.  

2.1 Model Selection and Benchmarking 

To select which transfer learning models to choose from 

the available models, the Keras Application benchmark 

[16] was referenced, considering model size, Top-1, 

and Top-5 accuracy. Keras, a Python-based neural 

network API, is used to run TensorFlow [17].  
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The chosen models were required to be smaller than the 

base model size of 692.4 MB while achieving high 

accuracy. To evaluate these models, a Size-Accuracy 

Weight (SW) metric was introduced as a reference 

metric, considering both the model size and 

classification performance. The equation for SW is 

shown in Formula 1.  

𝑆𝑊 =  
1

3
𝑥(

𝐵𝑀1

𝐵𝑀2
) + 𝑇1 +  𝑇5                   (1) 

BM1 refers to the base model size, which is 692.4 MB, 

while BM2 represents the benchmark model size, which 

is available in the Keras Application Benchmark [16] 

and varies depending on the selected transfer learning 

architecture. T1 is Top-1 accuracy, and T5 is Top-5 

accuracy, which, in the Keras Application benchmark, 

Top-1 and Top-5 accuracy refer to a model's 

performance on the ImageNet validation dataset. The 

widely accepted hypothesis is that models with higher 

accuracy gained from the ImageNet dataset show 

superior performance on a broad range of applications 

in another task [18]. ImageNet, a large-scale, human-

annotated dataset with 1.28 million images for training, 

50,000 for validation, and 100,000 for testing, covers 

1,000 different classes [19], making it a robust 

benchmark for evaluating model performance. The 

reasoning behind this hypothesis is that models trained 

on such a diverse and comprehensive dataset as 

ImageNet will develop a strong ability to generalise, 

which translates into superior performance when these 

models are fine-tuned for other specific tasks. 

In support of this, studies have consistently shown that 

supervised pre-trained models that perform well on 

ImageNet tend to achieve better results when applied to 

different tasks, including those that differ significantly 

from the original ImageNet classification task. This 

strong correlation between ImageNet accuracy and 

downstream task performance has made it a standard 

practice to use ImageNet accuracy as a key criterion for 

selecting pre-trained models in transfer learning [18]. 

To simplify the process of selecting the most suitable 

transfer learning architecture, this research not only 

relies on SW metrics but also incorporates the widely 

accepted practice of selecting transfer learning 

architecture based on their performance on ImageNet 

accuracy. Such as calculating the mean of Top-1 and 

Top-5 accuracy to deliver a more balanced assessment 

of model performance. This approach ensures that the 

evaluation captures not just the model's ability to 

predict the most likely class (Top-1) but also its 

capability to rank the correct class within its top five 

predictions (Top-5). The mathematical formula for this 

calculation is presented in Formula 2. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑒𝑎𝑛 =  
𝑇𝑜𝑝 1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑇𝑜𝑝 5 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

2
   (2) 

The remaining models were then ranked using the Size-

Accuracy Weight, a metric that balances model 

accuracy with its model's size. This approach ensures 

that the selected model's architecture not only performs 

well in terms of accuracy but is also manageable in 

terms of storage and deployment. Models that exceeded 

100 MB in size and had an accuracy mean below 80% 

were excluded from the transfer learning architecture 

selection. This threshold was set to prioritise models 

that offer a strong balance between high performance 

and practical usability, ensuring they are both effective 

and resource-efficient for real-world applications. The 

results from this transfer learning architecture selection 

are shown in Table 1. 

As seen in Table 1, several transfer learning 

architectures, such as EfficientNetV2B0 and 

EfficientNetB0, DenseNet121 and DenseNet201, as 

well as ResNet50 and ResNet50V2, belong to the same 

architectural family [20], [21], [22]. Therefore, only the 

highest-ranked model from each architecture family 

was selected. Seven models, MobileNetV2, 

NASNetMobile, EfficientNetV2B0, DenseNet121, 

Xception, InceptionV3, and ResNet50V2, were chosen 

for further evaluation, as they met the specified criteria. 

Table 1. Keras benchmark calculation result 

No Model Size (MB) Top-1 Accuracy Top-5 Accuracy SW Accuracy Mean 

1. MobileNetV2 14 71.30% 90.10% 17.024 80.70% 

2. NASNetMobile 23 74.40% 91.90% 10.589 83.15% 

3. EfficientNetV2B0 29 78.70% 94.30% 8.535 86.50% 

4. EfficientNetB0 29 77.10% 93.30% 8.527 85.20% 

5. EfficientNetB1 31 79.10% 94.40% 8.023 86.75% 

6. DenseNet121 33 75.00% 92.30% 7.552 83.65% 

7. EfficientNetV2B1 34 79.80% 95.00% 7.371 87.40% 

8. EfficientNetB2 36 80.10% 94.90% 6.994 87.50% 

9. EfficientNetV2B2 42 80.50% 95.10% 6.081 87.80% 

10. EfficientNetB3 48 81.60% 95.70% 5.399 88.65% 

11. DenseNet169 57 76.20% 93.20% 4.614 84.70% 

12. EfficientNetV2B3 59 82.00% 95.80% 4.505 88.90% 

13. EfficientNetB4 75 82.90% 96.40% 3.675 89.65% 

14. DenseNet201 80 77.30% 93.60% 3.455 85.45% 

15. EfficientNetV2S 88 83.90% 96.70% 3.225 90.30% 

16. Xception 88 79.00% 94.50% 3.201 86.75% 

17. InceptionV3 92 77.90% 93.70% 3.081 85.80% 

18. ResNet50V2 98 76.00% 93.00% 2.918 84.50% 

19. ResNet50 98 74.90% 92.10% 2.912 83.50% 
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Several previous studies have highlighted the good 

results of various transfer learning models on different 

datasets. For instance, Yong et al. [23] demonstrated 

that MobileNetV2 outperformed the CNN model in 

waste classification, achieving 15.42% higher accuracy. 

Naskinova [24] applied NASNetMobile for pneumonia 

X-ray classification, finding that it can improve 

accuracy by an average of 5% and reduce loss to 15%. 

Fayyad and Mustakim [25] compared several transfer 

learning architectures for glaucoma eye disease 

classification, with EfficientNetV2B0 emerging as the 

top performer, achieving 89.77% accuracy. Zebari et al. 

[26] used DenseNet121 to enhance brain tumour 

classification, reaching an accuracy of 94.83%. Salim et 

al. [27] conducted a comparative study using various 

transfer learning algorithms for fruit classification 

tasks, where Xception achieved 99.13% accuracy on the 

Fruits-360 dataset and 97.73% on the Fruit Recognition 

dataset. Jaware et al. [28] applied InceptionV3 for colon 

cancer classification, achieving 98.86% training 

accuracy and 99.74% validation accuracy after 100 

epochs. Additionally, Sailaja and VenuGopal [29] used 

ResNet50V2 for Parkinson's disease detection, 

achieving a perfect accuracy score of 100%, 

outperforming other models like MobileNetV2, which 

achieved 95%, and InceptionV3, which reached 99% 

accuracy. These studies collectively demonstrate that 

transfer learning algorithms can be implemented in 

various domains and demonstrate their reliability in 

producing high-performance models. 

2.1 Data Preparation 

After selecting the transfer learning architectures, the 

next step involved data preparation, which followed the 

approach used by Sujak and Rofiq [5]. This included 

data augmentation techniques such as rotations up to 10 

degrees, width and height shifts up to 10% and 

horizontal flipping. Reflect mode was used to fill empty 

pixels. These augmentations were applied during data 

preparation using an image generator, ensuring 

consistent settings across the seven selected transfer 

learning architectures for comparison in this research. 

 

Figure 1. Sample Dataset 

Figure 1 is the sample dataset of this research. 

2.2 Modelling 

Following data preparation, the next step is building the 

model. The first step is loading the pre-trained transfer 

learning model architectures with ImageNet weights. 

The original classification layers were removed by 

setting the arguments include_top to False, allowing 

custom layers to be added for the specific task. The 

global average pooling argument was applied to reduce 

each feature map by averaging all its elements to a 

single value. The trainable argument was set to False, 

freezing the pre-trained ImageNet weights to prevent it 

from being updated during training. This will preserve 

the knowledge and features learned from the extensive 

ImageNet dataset, allowing the model to focus on 

learning the specific features of the auction object 

classification task without losing the generalisation 

capabilities provided by the pre-trained weights. 

To further improve the performance of the transfer 

learning models, fine-tuning was applied by adding a 

dense layer with 128 units. This dense layer acts as a 

fully connected layer, which integrates features 

extracted by the pre-trained layers and allows the model 

to learn more complex patterns specific to the 

Indonesian auction dataset. The ReLU (Rectified Linear 

Unit) activation function was used in this dense layer, 

followed by a dropout layer with a dropout rate of 0.5 

to reduce the likelihood of overfitting. The final layer is 

configured with four output units using a softmax 

activation function to handle the multi-class 

classification task, classifying auction objects into four 

categories: Buildings, Cars, Motorbikes, and Salvage 

Materials. 

The model was optimised using the Adam optimiser 

and a batch size of 32. The categorical cross-entropy 

loss function is used, which is appropriate for multi-

class classification problems as it measures the model's 

performance by comparing the predicted class 

probabilities to the actual class labels. The training 

process was set to run for a maximum of 500 epochs to 

ensure that the model had enough training. An epoch is 

one complete pass through the entire training dataset, 

and allowing up to 500 epochs gives the model 

sufficient time to find its best model performance.  

2.3 Performance Evaluation 

To avoid overfitting and unnecessary computation, 

early stopping was implemented. This technique is set 

to monitor the validation loss during training. If the 

validation loss does not improve for ten consecutive 

epochs, it indicates that the model may no longer be 

learning or might start to overfit the training data, and 

the training process is automatically stopped. 

Validation loss is used to determine which epoch 

performs best and to identify the best model because it 

measures how well the model generalises to unseen 

data, so the model with the lowest validation loss was 

selected as the final model [30], [31]. 
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In addition to early stopping, model checkpointing was 

used to save only the best weight. This means that the 

model’s performance on the validation dataset was 

continuously monitored during training, and only the 

version with the lowest validation loss was saved. This 

approach helps to ensure that the final model saved 

retains its best performance while avoiding overfitting, 

saving both time and computational resources so it can 

perform better on the Indonesian auction dataset. 

Moreover, a confusion matrix was used to evaluate 

further and analyse the model's performance. 

These configurations were applied to all seven selected 

transfer learning models.  

Table 2. Global Model Summary 

Layer type Output Shape 

(Transfer Learning Model Architecture with ImageNet weight) 

Dense (None, 128) 

Dropout (None, 128) 

Dense (None, 4) 

Table 2 shows the global model summary used in this 

research, where the selected pre-trained transfer 

learning architecture determines the initial shape of the 

model. Then a dense layer and a dropout layer are 

added, followed by a final dense layer with four neurons 

designed to adapt the model to the four auction object 

classification tasks.  

Table 3. Total parameters from each model architecture 

No Model Total Parameters Trainable Parameters Non-trainable Parameters 

1. MobileNetV2 2,422,468 164,484 2,257,984 

2. NASNetMobile 4,405,528 135,812 4,269,716 

3. EfficientNetV2B0 6,083,796 164,484 5,919,312 

4. DenseNet121 7,169,220 131,716 7,037,504 

5. Xception 21,124,268 262,788 20,861,480 

6. InceptionV3 22,065,572 262,788 21,802,784 

7. ResNet50V2 23,827,588 262,788 23,564,800 

Table 3 details the total parameters, including trainable 

and non-trainable parameters from each model. The 

total parameters sum all model parameters, including 

trainable and non-trainable parameters. The number of 

total parameters affects the model's complexity and 

memory requirements for training the model.  Trainable 

Parameters are the parameters that will be updated 

during the training process. Fine-tuning these 

parameters allows the model to adapt to the specific task 

or dataset. Non-trainable Parameters are frozen and will 

not be updated during training. These Non-trainable 

parameters come from the transfer learning architecture 

chosen, which preserves previously learned knowledge 

and features. 

The experimental analysis was conducted on a 

Windows 11 operating system using Python 3.9.19 and 

TensorFlow 2.10.1, with CUDA version 11.2 and 

cuDNN 8.1. The setup ran on an Intel Core i7-12700 

processor, an NVIDIA GeForce RTX 3070 GPU with 8 

GB of VRAM, and 32 GB of RAM. 

3. Results and Discussions 

This research compares the performance of seven 

transfer learning models against a baseline model from 

Sujak and Rofiq [5] to assess their adaptability for 

auction object classification, where high accuracy is 

critical for its implementation. The transfer learning 

models evaluated were MobileNetV2, NASNetMobile, 

EfficientNetV2B0, DenseNet121, Xception, 

InceptionV3, and ResNet50V2. For each model, the one 

with the lowest validation loss during training was 

selected as the final model. Each model reached optimal 

performance at different epochs, depending on the 

complexity of the architecture and its ability to adapt to 

the Indonesian auction dataset. 

For example, MobileNetV2, which has fewer 

parameters, around 2.4 million, reached its best 

performance in just eight epochs and produced a 

relatively small model size of 11.1 MB. In contrast, 

more complex architectures like ResNet50V2 have 

significantly more parameters, around 23.8 million, and 

took longer to train, resulting in much larger model 

sizes of 95.5 MB but with better validation loss. This 

illustrates how models with more parameters generally 

lead to larger model sizes and require more training 

time to reach optimal performance. Table 4 provides a 

detailed summary of the training results for each model, 

including metrics such as training accuracy, training 

loss, validation accuracy, validation loss, model size, 

and the best epoch. 

The best epoch represents the point at which the model 

achieves the lowest validation loss during training. 

Once this is achieved, training is stopped if there is no 

further improvement in validation loss for ten 

consecutive epochs by using early stopping. The 

varying best epochs among the models reflect 

differences in training times and learning capabilities. 

These differences underscore the importance of model 

selection in transfer learning, as the complexity and 

architecture of a model can influence its training time, 

generalisation ability, and performance on specific 

tasks like Indonesian auction object classification. 

The Base Model, which refers to the previous research 

by Sujak and Rofiq [5], with a size of 692.4 MB, 

achieved a validation accuracy of 96.50% at its best 

epoch at 39, demonstrating a solid performance with a 

moderate model size. However, the majority of the 

transfer learning models outperformed the baseline 

model in both accuracy and model size, with several 

achieving perfect training and validation accuracy. 

Notably, NASNetMobile, DenseNet121, Xception, 
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InceptionV3, and ResNet50V2 reached 100% in 

training and validation accuracy, indicating their 

architectures are suitable for classifying auction objects. 

Larger architectures like ResNet50V2, InceptionV3, 

and Xception, although having the same 262,788 

trainable parameters, contain significantly more total 

and non-trainable parameters compared to other 

models, as shown in Table 3. This indicates greater 

complexity, which leads to larger model sizes, as seen 

in Table 4.  

Table 4. Training Results 

No Model Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Size 

(MB) 

Training 

Time 

1. Base Model 96.13% 0.12030 96.50% 0.10470 692.4 unknown 

2. MobileNetV2 99.75% 0.01550 100% 0.01331 11.1 3 min 54 s 

3. NASNetMobile 100% 0.00255 100% 0.00029 19.5 15 min 10 s 

4. EfficientNetV2B0 20.62% 1.38642 25.00% 1.38629 25.5 8 min 2 s 

5. DenseNet121 100% 0.00870 100% 0.00211 29.7 7 min 12 s 

6. Xception 100% 0.00037 100% 0.00018 84.8 14 min 41 s 

7. InceptionV3 100% 0.00119 100% 0.00011 88.8 15 min 3 s 

8. ResNet50V2 100% 0.00055 100% 0.00008 95.5 8 min 26 s 

Despite their size, these models achieved the overall 

lowest validation loss and 100% accuracy in both 

training and validation. Notably, from the transfer 

learning model with a larger architecture, ResNet50V2 

achieved its optimal performance with a faster training 

time, requiring only 25 epochs to produce the best 

model on the Indonesian auction dataset with a 

validation loss of 0.00008. However, a more complex 

architecture does not always guarantee better results. 

NASNetMobile, with the second smallest total 

parameter count, achieved comparable performance, 

including a low validation loss, 0.00029 and 100% 

accuracy in training and validation, demonstrating that 

simpler architectures can be equally effective. 

MobileNetV2 also demonstrated excellent performance 

by achieving 100% validation accuracy with a 

significantly smaller model size of just 11.1 MB and 

within only eight epochs, making it one of the most 

efficient in terms of size and training speed. Although 

its training accuracy was slightly lower at 99.75%, it 

still outperformed the baseline model. In contrast, 

EfficientNetV2B0 underperformed, with training and 

validation accuracies of only 20.62% and 25%, 

respectively. This poor performance suggests that 

EfficientNetV2B0's architecture, while known for its 

efficiency in some tasks, is not well-suited for the 

auction object classification problem. The 

EfficientNetV2B0's inability to perform in the 

Indonesian Auction dataset underscores the importance 

of comparing multiple transfer learning architectures to 

identify the most suitable model for a specific task. 

The base model lacks training time information, as it 

was not provided in the previous research, making a 

direct comparison of training time from the base model 

with transfer learning models impossible. However, the 

transfer learning architecture used in this research 

exhibited varying training times. MobileNetV2 was the 

fastest, achieving its best result in just 3 minutes and 54 

seconds, making it the most efficient in terms of speed 

and accuracy. In contrast, NASNetMobile, despite 

having fewer parameters than ResNet50V2, took 

significantly longer at 15 minutes and 10 seconds. 

Interestingly, ResNet50V2, with the largest total 

parameters in this research, required 8 minutes and 26 

seconds to achieve its best result. This suggests that 

training time depends not only on parameter count but 

also on the model’s architecture and efficiency. 

 

Figure 2. Confusion Matrix from MobileNetV2 

Figure 2 presents the classification performance of the 

MobileNetV2 model, which achieved 100% accuracy 

across all categories, with every category correctly 

predicted without any misclassifications. 

 

Figure 3. Confusion Matrix from NASNetMobile 
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Figure 3 presents the classification performance of the 

NASNetMobile model, which achieved 100% accuracy 

across all categories, with every category correctly 

predicted without any misclassifications. 

 

Figure 4. Confusion Matrix from EfficientNetV2B0 

Figure 4 shows that EfficientNetV2B0 model failed to 

differentiate between the categories and did not 

generalize well to the task, leading to a 100% 

misclassification rate for all categories except building. 

 

Figure 5. Confusion Matrix from DenseNet121 

Figure 5 presents the classification performance of the 

DenseNet121 model, which achieved 100% accuracy 

across all categories, with every category correctly 

predicted without any misclassifications. 

Figure 6 presents the classification performance of the 

MobileNetV2 model, which achieved 100% accuracy 

across all categories, with every category was correctly 

predicted without any misclassifications. 

Figure 7 presents the classification performance of the 

InceptionV3 model, which achieved 100% accuracy 

across all categories, with every category correctly 

predicted without any misclassifications. 

 

 

Figure 6. Confusion Matrix from Xception 

 

Figure 7. Confusion Matrix from InceptionV3 

 

Figure 8. Confusion Matrix from ResNet50V2 

Figure 8 presents the classification performance of the 

ResNet50V2 model, which achieved 100% accuracy 

across all categories, with every category correctly 

predicted without any misclassifications. 
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Table 5. Results from Previous Research [5] 

 Classification Result 

 Buildings Salvage 

Materials 

Cars Motorbikes 

Buildings 50 0 0 0 

Salvage 

Materials 
3 44 1 2 

Cars 0 0 50 0 

Motorbikes 0 1 0 49 

Figure 2 to 8 presents the confusion matrix for each 

transfer learning model. As most transfer learning 

models achieved 100% accuracy, the confusion 

matrices show perfect classification across all 

categories. The only exception is EfficientNetV2B0 

(Figure 4), which failed to classify objects outside of the 

buildings category. In comparison to the previous 

research results in Table 5, the base model frequently 

misclassified salvage materials. However, this issue 

was effectively solved by applying transfer learning 

methods, which improved the classification of these 

challenging objects. 

Table 4 clearly shows that most transfer learning 

models are highly effective in being implemented for 

auction object classification, outperforming the custom 

baseline CNN model in both accuracy and 

computational efficiency. NASNetMobile, 

DenseNet121, Xception, InceptionV3, and 

ResNet50V2 not only achieved 100% in training and 

validation accuracy but also demonstrated strong 

generalisation capabilities, as reflected in their low 

validation losses and high accuracy. Additionally, 

MobileNetV2 stands out for its smaller size (11.1 MB) 

and quick training, making it ideal for deployment in 

resource-constrained environments, such as mobile 

applications, where a smaller model is needed for 

seamless integration. 

4. Conclusions 

This research evaluated the performance of seven 

transfer learning models: MobileNetV2, 

NASNetMobile, EfficientNetV2B0, DenseNet121, 

Xception, InceptionV3, and ResNet50V2, on the 

Indonesian Auction Object Dataset. The results 

demonstrated that most transfer learning models 

significantly outperformed the baseline model, with 

MobileNetV2, NASNetMobile, DenseNet121, 

Xception, InceptionV3, and ResNet50V2 all achieving 

100% in validation accuracy. Among these, 

MobileNetV2 and NASNetMobile stand out for their 

accuracy, low validation loss, and smaller model size. 

Moreover, MobileNetV2 is the best choice, offering a 

higher accuracy and the lowest model size, making it 

suitable for deployment in mobile applications.  

Moreover, EfficientNetV2B0's poor performance 

confirms that, although it may perform well in other 

domains, it is not suited for the Indonesian Auction 

dataset, highlighting the need to select architectures that 

can perform well in specific tasks carefully.  

This research confirms that transfer learning improves 

auction object classification accuracy, but not all 

architectures are suitable, as EfficientNetV2B0 proved 

ineffective for the Indonesian auction dataset. Future 

research should explore the potential of other emerging 

transfer learning architectures, apply further fine-tuning 

strategies, and investigate the impact on larger, more 

diverse datasets to assess generalisability and 

robustness across different auction objects. 
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