
 Received: 15-09-2024 | Accepted: 11-11-2024 | Published Online: 25-12-2024

719

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 6 (2024) 719 - 729 e-ISSN: 2580-0760

The Memory Efficiency in a Receptionist Robot's Face Recognition

System Using LBPH Algorithm

Endang Darmawan Yudi1, Yesi Novaria Kunang2*, Ahmad Zarkasi3
1, Master of Informatics Engineering, Universitas Bina Darma, Palembang, Indonesia

2Intelligent Systems Research Group, Faculty of Sains Technology, Universitas Bina Darma, Palembang Indonesia
3Department of Computer Engineering, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia

1endangdarmawanyudi123@gmail.com, 2yesinovariakunang@binadarma.ac.id, 3ahmadzarkasi@unsri.ac.id

Abstract

This research aims to develop a memory-efficient face recognition system for a receptionist robot using the Local

Binary Patterns Histogram (LBPH) algorithm. Given the computational limitations of the Raspberry Pi, the system

utilizes optimization techniques including grayscale conversion, noise reduction, and contrast adjustment to

enhance processing efficiency. Testing demonstrates that the face recognition accuracy achieves 80.5% to 85.5%

in offline mode, and 72% to 81% in real-time mode, with variations due to lighting conditions and facial

expressions. The robot's servo motors exhibit a response time between 1.945 and 3.561 seconds, enabling

responsive and interactive user engagement. The results suggest practical benefits for deploying face recognition

in resource-constrained environments, enhancing the efficiency of robotic receptionist applications.

Keywords: Face recognition; LBPH; memory efficiency; Raspberry Pi

How to Cite: E. D. Yudi, Yesi Novaria Kunang, and A. Zarkasi, “The The Memory Efficiency in a Receptionist Robot’s Face

Recognition System Using LBPH Algorithm”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 6, pp. 719 - 729, Dec. 2024.

DOI: https://doi.org/10.29207/resti.v8i6.6048

1. Introduction

Face recognition is one of the key components in the

development of artificial intelligence [1], [2]. In

everyday life, humans naturally recognize others' faces

simply by observing their eyes and facial features. This

information is then stored in the brain, allowing us to

identify individuals in future encounters. In the field of

technology, the concept of face recognition has been

widely adopted for various purposes, such as

communication, identity verification, and attendance

systems [3], [4].

Facial recognition is part of a broader field known as

computer vision, which is a technology that enables

computers to see, detect, and process images like human

vision [5]. Computer vision forms the foundation for

many automation applications requiring visual analysis,

including facial recognition. In this context, facial

recognition works by identifying unique features on a

person's face, such as the eyes, nose, and mouth, which

are then processed and stored in a database [6], [7], [8].

When the system scans a face, this data is compared to

the existing database to identify and verify the

individual's identity.

Various techniques in computer vision have been

developed for facial recognition, such as Viola-Jones,

Eigenfaces, Fisherface, and Local Binary Patterns

Histograms (LBPH)[9]. Each technique has its

advantages and disadvantages, as well as different

applications depending on specific needs [10].

Compared to other computer vision techniques, such as

Eigenfaces and Fisherface, the LBPH algorithm

demonstrates superior performance in environments

with limited computational resources, such as

Raspberry Pi. Unlike Eigenfaces, which are sensitive to

variations in lighting, or Fisherfaces, which require

more extensive training data, LBPH is more robust in

handling diverse lighting conditions and requires less

memory [9], [11], [12]. This makes LBPH an ideal

choice for real-time face recognition in constrained

environments where computational efficiency is a

priority(1). This method uses local binary patterns to

analyze the texture of an image, where pixel intensity

https://doi.org/10.29207/resti.v8i6.6048

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 720

values are compared with their neighbors to generate a

binary pattern. LBPH then divides the image into

several blocks, calculates the binary pattern histogram

for each block, and uses this information to recognize

the face.

The development of technology in this research

encompasses an in-depth study of facial recognition

technology, the use of Raspberry Pi 3 in system

development [11], [13] and the latest innovations in the

implementation of receptionist robots. The novelty of

this research lies in the integration of these three

aspects, with an emphasis on memory efficiency on the

Raspberry Pi 3. Although various related studies exist,

such as the work by Hossain on Local Binary Patterns

Histogram (LBPH) [14], which demonstrates that this

algorithm can provide good results in facial recognition

by utilizing texture information, this research

introduces a new concept to enhance memory

management efficiency on the Raspberry Pi 3 in the

context of facial recognition for receptionist robots.

LBPH was chosen in this study due to its ability to

utilize smaller data sources compared to other

algorithms, such as Eigenfaces or Fisherfaces, making

it more suitable for resource-constrained devices like

the Raspberry Pi. The Raspberry Pi, which has

limitations in computational power and memory

capacity, requires an algorithm that is efficient in data

processing, and LBPH meets this need. While LBPH

may be less robust to changes in viewpoint or pose, its

advantages in data efficiency and performance make it

superior for real-time applications on platforms with

limited resources.

In this research, we will implement facial recognition

technology using the Raspberry Pi as the main

processing unit. Due to the resource constraints of the

Raspberry Pi, efficient programming methods and

approaches are necessary in terms of memory usage and

overall efficiency. The system will use features such as

Haar to detect facial features like eyes and mouth before

applying the LBPH algorithm for complete facial

recognition [15], [16]. By utilizing an efficient data

algorithm, the output of this system will be applied to

the receptionist robot, which is capable of greeting

guests or providing necessary information, making it

more interactive and efficient in carrying out

receptionist tasks.

2. Research Methods

The overall flow of the LBPH algorithm-based facial

recognition robot can be seen in Figure 1. The system

begins with the process of face detection through a

connected camera. Once a face is detected, the system

automatically runs the LBPH (Local Binary Patterns

Histogram) Face Recognition algorithm to identify

whether the face is already in the database or dataset

that stores data of previous guests.

If the LBPH algorithm finds that the face is already

registered in the dataset, the next step is to display the

corresponding guest's name. The name is retrieved from

the dataset based on facial identification. After the

guest’s name is displayed, the system will proceed by

asking if the guest would like to perform a check-out

process. Check-out indicates that the guest has

completed their visit and wishes to remove their data

from the system. If the guest opts for check-out, the

system will delete all data related to the guest's face

from the dataset, ensuring that no personal information

is stored longer than necessary. Once the data deletion

is complete, the system ends the process. If the

registered guest does not choose to check out, the

system will make no changes to the dataset and will

return to waiting for the next face detection, repeating

the cycle.

On the other hand, if the detected face is not found in

the dataset, the system recognizes that the guest is not

yet registered. At this point, the system will offer the

guest the option to check-in. Check-in is the process of

registering a new guest into the system. If the guest

chooses to check in, the first step is to ask the guest to

enter their name. This name is required to associate the

identity with the facial data that will be stored.

The decision to capture 50 images of each individual is

based on the need to enhance the variability of the facial

data. By taking multiple images from different angles

and with slight variations in lighting and expressions,

the system builds a more comprehensive dataset for

each person. This approach helps improve the

recognition accuracy and ensures that the model is

robust enough to handle minor changes in the face's

appearance during real-time recognition.

After the guest's name is entered, the system will then

capture 50 images of the guest’s face. The image

capture is done gradually to ensure that the system has

enough image variation to improve accuracy in

recognizing the guest's face in the future. Each captured

image will be stored in a special folder named after the

newly entered guest. While this study did not

implement data augmentation techniques, such as

flipping, rotation, or adding noise to the images, using

these methods could potentially increase the variability

of the dataset. Augmented data can help the system

generalize better by simulating different real-world

conditions, thus enhancing the robustness of face

recognition even further.

Once the 50 facial images are successfully captured and

saved, the guest has successfully checked in. Their

facial data is now in the dataset and will be used for

verification in future instances. After the check-in

process is complete, the system returns to its initial

state, ready to detect the next face. However, if the guest

whose face is not in the dataset chooses not to check in,

the system will end the process and return to the initial

stage, waiting for the next face detection without storing

any data.

Overall, this system leverages the LBPH algorithm for

facial recognition with a high level of accuracy and

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 721

efficiently manages guest data through automated

check-in and check-out processes. In this way, the

system can handle both new and registered guests in an

easy, secure, and structured manner.

Figure 1. Flowchart System

2.1 Facial Recognition

The detailed flow of the facial recognition embedded in

the robot can be seen in Figure 2. The program design

system starts by converting the previously colored

(RGB) image into a grayscale using Equation 1.

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =
𝑅+𝐺+𝐵

3
 (1)

Figure 2. Facial processing workflow

In a colored image, each pixel consists of three-color

components: red (R), green (G), and blue (B). To obtain

the grayscale value, this equation calculates the average

of these three-color components. In other words: 𝑅 is

the red intensity value, 𝐺 is the green intensity value,

and 𝐵 is the blue intensity value. The equation sums the

red, green, and blue intensity values, then divides the

total by 3 to obtain the grayscale value [17]. This value

represents the brightness of the pixel, where 0 is black

and 255 is white on an 8-bit scale. This process is

essential because a grayscale image reduces data

complexity by using only one-color channel, making it

more efficient for processing.

After conversion, resizing or normalization and

adjustment of the size are performed to ensure the

image is on a uniform scale, avoiding differences in face

size that could affect detection accuracy. To resize an

image mathematically, interpolation formulas can be

used. There are several interpolation methods available,

but one of the most common is bilinear interpolation.

Suppose we want to resize an image from 𝑊 × 𝐻 to

𝑊′× 𝐻′. A point on the original image at coordinates (x,

y) will be mapped to a new point on the resized image.

The new coordinates on the resized image are (𝑥', 𝑦′) as

shown in Equations 2 and 3.

x ′ =
x

𝑊
 × 𝑊′ (2)

y ′ =
y

𝐻
 × 𝐻′ (3)

The point (𝑥′, 𝑦′) on the new image may not align

exactly with the pixel grid of the resized image. To

obtain the pixel value at this point, we use bilinear

interpolation. Suppose (𝑥1, 𝑦1), (𝑥2, 𝑦1), (𝑥1, 𝑦2) and
(𝑥2, 𝑦2) are the coordinates of the pixels on the original

image surrounding the point (𝑥′, 𝑦′), with pixel

intensities 𝐼(𝑥1, 𝑦1), 𝐼(𝑥2, 𝑦1), 𝐼(𝑥1, 𝑦2), and 𝐼(𝑥2, 𝑦2).

Horizontal interpolation is performed using Equations 4

and 5.

𝐼𝑥′,𝑦1 = 𝐼(𝑥1, 𝑦1) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦1) × 𝛼 (4)

𝐼𝑥′,𝑦2 = 𝐼(𝑥1, 𝑦2) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦2) × 𝛼 (5)

α is 𝑥′ - 𝑥1 (horizontal projection).

Vertical interpolation is performed using Equation 6.

𝐼(𝑥′, 𝑦′) , = 𝐼𝑥′,𝑦1 × (1 − 𝛽) + 𝐼𝑥′,𝑦2 × 𝛽 (6)

 β is 𝑦′ - 𝑦1 (vertical projection).

Then, the noise removal and lighting correction stages

are performed to improve image quality, ensuring that

the image is free from disturbances that could affect

facial recognition accuracy. A Gaussian filter is used to

smooth the image and reduce noise by averaging the

intensity of surrounding pixels. This filter uses a

Gaussian function, given by Equation 7.

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+ 𝑦2

2𝜎2 (7)

𝜎 is the standard deviation of the Gaussian distribution.

This function assigns greater weight to pixels close to

the center of the filter window and smaller weight to

pixels further away. Convolving the image with the

Gaussian kernel results in a smoother image by

reducing noise and unwanted fine details.

Contrast adjustment aims to enhance the difference

between light and dark areas in the image to make

details more distinct [12]. This is achieved by

modifying the pixel intensity scale using Equation 8.

𝐼′(𝑥, 𝑦) = 𝛼𝐼(𝑥, 𝑦) + 𝛽 (8)

𝛼 is the contrast factor and 𝛽 is the brightness offset. A

contrast factor 𝛼 greater than 1 will increase the

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 722

contrast, making dark areas darker and light areas

lighter, while the offset 𝛽 shifts the pixel intensity

range, increasing or decreasing overall brightness. By

applying this adjustment, the image will have optimal

contrast, making features more prominent and easier to

analyze.

The next step is to compute the integral image, which

helps speed up the computation process for feature

recognition [18]. The integral image, also known as the

summed-area table, is a highly useful technique for

accelerating feature calculations in image processing.

This technique allows for very efficient computation of

the sum of pixels in a rectangular area. The integral

image Iint(x, y) at position (x, y) is defined as the sum

of all pixel intensities in the top-left part of the image

up to that position [19], calculated using Equations 9.

𝐼𝑖𝑛𝑡(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑦
𝑗=0

𝑥
𝑖=0 (9)

𝐼(𝑖, 𝑗) is the pixel intensity at the position (𝑖, 𝑗) in the

original image. Once the integral image is computed,

the sum of pixels in a rectangular area with the top-left

corner at (𝑥1, 𝑦1) and the bottom-right corner at (𝑥2, 𝑦2)

can be calculated using Equation 10.

𝑠𝑢𝑚(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝐼𝑖𝑛𝑡(𝑥2, 𝑦2) − 𝐼𝑖𝑛𝑡(𝑥1 − 1, 𝑦2) −

𝐼𝑖𝑛𝑡(𝑥2, 𝑦2 − 1) + 𝐼𝑖𝑛𝑡(𝑥1 − 1, 𝑦1 − 1) (10)

This equation allows for the calculation of the sum of

pixels in constant time 𝑂(1), which is highly efficient

compared to traditional methods. With the integral

image, you can accelerate the computation process for

feature recognition, such as in face detection, making

the image analysis process much faster and more

efficient.

Using the Haar Cascade Classifier faces in an image are

identified through filtering techniques that search for

specific patterns or features on the face [20]. Haar

features work by comparing bright and dark rectangular

areas in the image, where the pixel intensity in the

brighter area is subtracted from the pixel intensity in the

darker area. This feature is expressed in Equation 11.

𝐹 = ∑ 𝐼(𝑥, 𝑦)𝑎𝑟𝑒𝑎 𝑝𝑢𝑡𝑖ℎ − ∑ 𝐼(𝑥, 𝑦)𝑎𝑟𝑒𝑎 ℎ𝑖𝑡𝑎𝑚 (11)

 𝐼 (𝑥, 𝑦) is the pixel intensity at position (𝑥, 𝑦). To

accelerate the computation of Haar features, the integral

image is used, which enables efficient calculation of

pixel intensity sums in rectangular areas. The method is

then trained using the AdaBoost algorithm, which

selects the most important Haar features from the

numerous available features. Each feature is used to

form a weak classifier, and the combination of these

weak classifiers creates a strong classifier that is more

accurate in detecting objects. The Haar Cascade also

employs a cascading structure, where the image is

processed through multiple stages of classifiers. If an

area fails to be detected as an object at an early stage, it

is immediately discarded, thus speeding up the

detection process. This method is known for its

efficiency in image processing because it combines

Haar features with the AdaBoost algorithm and cascade

structure, making it one of the fast and accurate facial

detection methods.

Once a face is detected, the system displays the face

using Cascade Classification and also calculates the

position of the face captured by the camera. At this

stage, the system will adjust the servo motors on the

robot to direct the camera, which is positioned where

the robot's eyes are, to always face the detected face.

The servo motors are used to control the movement

along the x and y axes, ensuring that the user's face

remains at the center of the robot's camera. This process

is repeated to continuously monitor the face.

The Local Binary Pattern Histogram (LBPH) method is

an approach used for facial recognition by utilizing

local texture patterns. The process begins by converting

the face image to grayscale, which simplifies the data

being processed by focusing on the light intensity of

each pixel [10]. Then, the Local Binary Pattern (LBP)

algorithm is applied, which compares each central pixel

with its surrounding neighbors in a 3x3 block as shown

in Equation 12. A binary pattern is generated based on

the pixel intensity comparison, where a value of 1 is

assigned if the neighboring pixel is greater than or equal

to the central pixel, and a value of 0 if it is smaller.

𝐿𝐵𝑃 = ∑ 𝑠(𝑁𝑖 − 𝑃) . 2𝑖𝑘−1
𝑖=0 (12)

𝑠(𝑥) 𝑖𝑠 1 if 𝑥 ≥ 0, and 𝑠(𝑥) 𝑖𝑠 0 if 𝑥 < 0, 𝑁𝑖 is the

intensity of the i-th neighboring pixel, 𝑃 is the intensity

of the central pixel.

After the LBP pattern is computed for all pixels in the

image, the face image is divided into several small

blocks, and the histogram of LBP values is computed

for each block. This histogram represents the frequency

of occurrence of LBP patterns within that block, and the

histograms from each block are then combined to form

a global histogram that describes the entire face [21] as

shown in Equation 13.

𝐻(𝑗) = ∑ 𝐼(𝐿𝐵𝑃(𝑥, 𝑦) = 𝑗)𝑥,𝑦 (13)

𝐻(𝑗) is the histogram value for the LBP pattern -𝑗, 𝐼

is the indicator function that equals 1 if 𝐿𝐵𝑃(𝑥, 𝑦) = 𝑗,

and 0 otherwise, 𝑥 and 𝑦 are the pixel coordinates

within the block.

After the new face histogram is calculated, the next step

is to compare it with the histogram stored in the

database. This comparison is often done using

Euclidean distance, which measures the distance

between two face histograms [22] as shown in Equation

14.

𝑑(𝐻1, 𝐻2) = √∑ (𝐻1(𝑖) − 𝐻2(𝑖))2𝑛
𝑖=1 (14)

𝐻1 and 𝐻2 are the histograms of two face images, 𝑛 is

the number of elements in the histogram.

If the Euclidean distance between the new image

histogram and one of the histograms in the database is

small, the new face is recognized as a registered face.

This process allows for LBPH-based facial recognition

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 723

to be performed accurately and efficiently, despite its

simplicity.

2.2 Robot Development

This project involves the development of an interactive

robot consisting of several key components such as a

Raspberry Pi 3, camera, keyboard, monitor, Arduino

Uno, and servo motors (see Figure 3). The Raspberry Pi

3 acts as the processing hub, running the facial

recognition program using a camera placed in the

robot's eye section. This camera is used to detect and

track the user's face in real-time. The keyboard

functions as the user data input, while the monitor

provides a visual interface that displays the results of

facial recognition or other interactions.

The Arduino Uno is used as the main controller to

operate two servo motors that control the X and Y axes

of the robot's head. These servos enable the robot's head

to follow the user's movements, ensuring that the

camera remains directed at the user's face. In the robot's

physical design, as shown in the diagram, the robot's

head is made from 3D-printed materials with the servo

system embedded inside (see Figure 4). These servos

enable mechanical movement of the eyes and head to

follow the user's movements, creating a more natural

interaction.

Figure 3. Schematic Robot

Figure 4. Robot Design

The camera mounted in one of the robot's eyes is

connected to the facial recognition system on the

Raspberry Pi. After detecting a face, the system sends a

signal to the Arduino to control the servo motors,

enabling the robot's head and eyes to follow the user's

movements. With this design, the robot is capable of

mimicking human movements in a more interactive and

responsive manner, providing a more realistic

experience in facial recognition and tracking.

3. Results and Discussions

In this section, we will explore the results of various

tests and analyses conducted using methods appropriate

to their respective scales.

3.1 Face Recognition Result

The first test involves converting an initially colored

(RGB) image into a black-and-white (grayscale) image

to simplify image processing and improve

computational efficiency.

Figure 5. RGB to Grayscale

The conversion process from RGB to grayscale for a

296x296 pixel image begins by extracting the RGB

values from each pixel in the image (Figure 5). For

example, at a pixel with coordinates (x, y) = (209, 123),

the RGB values are (175, 90, 121), where 175 is the red

channel value, 90 is the green channel value, and 121 is

the blue channel value. The first step in the conversion

is to calculate the grayscale value for this pixel using

the standard conversion formula, which takes into

account the relative contribution of each color channel.

Equation (1) will be used for this calculation.

After the calculation, the grayscale value obtained for

the pixel (x, y) = (209, 123) is approximately 127. As a

result, in the new grayscale image, the pixel at the same

coordinates (209, 123) will have an intensity value of

127. This process is repeated for each pixel in the

255x255 image, resulting in a grayscale image of the

same dimensions, where each pixel has a single

grayscale intensity value instead of the three RGB color

values. The process continues for each pixel until every

pixel in the color image is converted to grayscale. In this

way, the initially 255x255 RGB image is transformed

into a grayscale image of the same dimensions, but with

color information replaced by grayscale intensity values

(see Figure 6).

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 724

The next step is to resize the image, where the

previously grayscale-converted image of 296x296

pixels is resized to 255x255 pixels. To resize the image

from 296x296 pixels to 255x255 pixels manually, we

can use interpolation methods, one of which is a nearest

neighbor interpolation. For each point (𝑥, 𝑦) in the

original image, we calculate the new position (𝑥′, 𝑦′)

using Equations 2 and 3.

Figure 6. the RGB conversion to a 3x3 Grayscale value

After calculating 𝑥′ and 𝑦′, we use bilinear interpolation

to determine the pixel intensity value at (𝑥′, 𝑦′). If (129,

129) is the nearest coordinate in the new pixel grid, we

use the four nearest pixels from the original image to

compute the intensity value at this position. Since the

coordinates (𝑥′, 𝑦′) = (129.39, 129.39) do not fall

exactly on the new pixel grid, we need to use the

intensity values from the four nearest pixels in the

original image: (𝑥1, 𝑦1) = (129,129).

(𝑥2, 𝑦1) = (130,129)

(x1,y2)=(129,130)

(𝑥2, 𝑦2) = (130,130)

Let the pixel intensities at each of these points be:

𝐼(𝑥1, 𝑦1) = 𝐼(129,129)

𝐼(𝑥2, 𝑦1) = 𝐼(130,129)

𝐼(𝑥1, 𝑦2) = 𝐼(129,130)

𝐼(𝑥2, 𝑦2) = 𝐼(130,130)

We start with horizontal interpolation to obtain the

intensity value between (𝑥1, 𝑦1) and (𝑥2, 𝑦1) at the

coordinate (𝑥′, 𝑦1), and between (𝑥1, 𝑦2) and (𝑥2, 𝑦2)

at the coordinate (𝑥′, 𝑦2)

𝐼(𝑥′, 𝑦1) = 𝐼(𝑥1, 𝑦1) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦1) × 𝛼

𝐼(𝑥′, 𝑦2) = 𝐼(𝑥1, 𝑦2) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦2) × 𝛼

Where α=x′−x1=129.39−129=0.39

Thus, we can calculate:

𝐼(𝑥′, 𝑦1) = 𝐼(129,129) × (1 − 0.39) + 𝐼(130,129) × 0.39

𝐼(𝑥′, 𝑦2) = 𝐼(129,130) × (1 − 0.39) + 𝐼(130,130) × 0.39

After obtaining 𝐼(𝑥′, 𝑦1) and 𝐼(𝑥′, 𝑦2), we perform

vertical interpolation to calculate the final intensity

value at the coordinate (𝑥′, 𝑦′):

𝐼(𝑥′, 𝑦′) = 𝐼(𝑥′, 𝑦1) × (1 − 𝛽) + 𝐼(𝑥′, 𝑦2) × 𝛽

Where:

𝛽 = 𝑦′ − 𝑦1 = 129.39 − 129 = 0.39
𝐼(𝑥′, 𝑦′) = 𝐼(𝑥′, 𝑦1) × (1 − 0.39) + 𝐼(𝑥′, 𝑦2) × 0.39

If 𝐼(𝑥′, 𝑦1) = 𝑎; 𝐼(𝑥′, 𝑦2) = 𝑏

Then:

𝐼(𝑥′, 𝑦′) = 𝑎 × (1 − 0.39) + 𝑏 × 0.39

𝐼(𝑥′, 𝑦′) = 𝑎 × 0.61 + 𝑏 × 0.39

Thus, we can determine the pixel intensity value at

(𝑥′, 𝑦′), which is the result of interpolation from the

four nearest pixels in the original image. This process

is applied to every pixel in the new image, resulting in

a resized image from 296x296 to 255x255 pixels with

smoother transitions.

Figure 7. Filter Gaussian

From the results of the image that has been converted

to grayscale and resized to 255x255 pixels, the next

step is noise removal from the image using the

Gaussian filter equation shown in Figure 7. Here, we

demonstrate the calculation using a 3x3 pixel example

we previously illustrated,

 Image= [
181 180 180
180
179

179 180
179 127

]

𝐾𝑒𝑟𝑛𝑒𝑙 = [
0.0613 0.1221 0.0613
0.1221
0.0613

0.2442 0.1221
0.1221 0.0613

]

To calculate the pixel value resulting from the

Gaussian filter at the center position (1,1) of the image,

we perform a convolution with the Gaussian kernel:

𝑅𝑒𝑠𝑢𝑙𝑡 = ∑ ∑ (Image[i + 1, j + 1] × Kernel[i + 1, j + 1])1
𝑗=−1

1
𝑖=−1

With the updated pixel values, the pixel value resulting

from the Gaussian filter for the center position (1,1) on

the given 3x3 grayscale image is approximately

171.60. In this way, you can calculate the resulting

pixel values for the entire image if the image is larger,

by sliding the Gaussian kernel to each pixel position

and performing the convolution calculation.

Next is contrast adjustment, which aims to enhance the

difference between light and dark areas in the image to

make the details clearer.

Figure 8. contrast adjustment

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 725

To achieve the results as shown in Figure 8, the author

applied contrast adjustment using equation (8), where

we want to set the contrast with α=1.5 (contrast factor)

and β=0 (brightness offset). This results in updated

values for each pixel.

After the contrast adjustment with α=1.5 and β=0, the

resulting image is:

𝐼𝑚𝑎𝑔𝑒 = [
181 180 180
180
179

179 180
179 127

]

At this step, each pixel value has been adjusted

according to the given contrast factor and clipped to the

0-255 range. This is the result of the contrast

adjustment, which enhances the difference between

light and dark areas in the image shown in Table 1.

Table 1. The result of the contrast adjustment on 3x3 pixel image

Pixel

(x, y)

Original

Intensity
α × I(x, y)

Offset

β

Result

I'(x, y)

Clamping

Result

(0, 0) 181 271.5 0 271.5 255

(0, 1) 180 270 0 270 255

(0, 2) 180 270 0 270 255

(1, 0) 180 270 0 270 255

(1, 1) 179 268.5 0 268.5 255

(1, 2) 180 270 0 270 255

(2, 0) 179 268.5 0 268.5 255

(2, 1) 179 268.5 0 268.5 255

(2, 2) 127 190.5 0 190.5 190

In the integral image process, the result of contrast

adjustment will be calculated using Equation 9 which

produces Figure 9 as shown in Table 2.

Figure 9. Integral Image

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 = [
255 255 255
255
255

255 255
255 190

]

Table 2. Integral image calculation results on 3x3 pixels

Pixel

(x,y)

Intensity

I'(x,y)

Integral

(x,y)
Calculation

(0, 0) 255 255 255

(0, 1) 255 510 255+255

(0, 2) 255 765 510+255

(1, 0) 255 510 255+255

(1, 1) 255 1020 510+510

(1, 2) 255 1275 765+255

(2, 0) 255 765 510+255

(2, 1) 255 1275 765+510

(2, 2) 190 1720 1275+190

Integral Image is a cumulative table that stores the sum

of pixels from the top-left corner to a specific point in

the image, allowing for more efficient calculation of

Haar-Like features. Haar-Like features are used to

detect certain patterns in an image, such as edges,

corners, or lines, by calculating the difference between

dark and light areas in rectangular shapes. By using the

Integral Image, Haar-Like features are calculated

quickly without requiring access to individual pixels.

Once the Haar-Like features are computed, a Haar

Cascade Classifier is applied to detect faces by testing

specific patterns that have been learned. If the

recognized pattern matches a face pattern, a bounding

box is drawn around the face in the image (Figure 10).

This process enables accurate and effective face

detection in grayscale images by utilizing specific

features and efficient data structures.

Extracted features for face at (x=14, y=14):

[1.359e+03 0.000e+00 2.000e+00 0.000e+00 0.000e+00 2.000e+00 1.000e+00

4.000e+00 0.000e+00 4.000e+00 4.000e+00 2.000e+00 3.000e+00 7.000e+00

1.400e+01 1.100e+01 1.100e+01 2.100e+01 2.000e+01 2.900e+01 3.800e+01

4.700e+01 6.000e+01 5.500e+01 6.800e+01 8.500e+01 9.200e+01 1.140e+02…

Figure 10. result of the haar cascade classifier

Once the face has been detected in the previous process,

the next step is to divide the face into small blocks, such

as blocks sized 3x3 pixels. Each of these small blocks

will be processed to calculate what we call the Local

Binary Pattern (LBP), as shown in Figure 11. The

program works by taking one pixel in the center of the

block as the central pixel, and then comparing the

intensity value of this central pixel with its neighbors

around the 3x3 block.

Figure 11. LBP operation

If the neighbor's value is greater than or equal to the

central pixel, we assign a value of 1. Conversely, if the

neighbor is less than the central pixel, we assign a value

of 0. These values then form a binary pattern. For

example, if we have a central pixel with an intensity of

52, and its neighbors have higher values like 162, 170,

180, and so on, we will get a binary pattern of all 1s.

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 726

This binary pattern is then converted into a decimal

value. In this case, the binary 11111111 will be

converted to 255 in decimal.

After the decimal values are obtained from each central

pixel throughout the face, these values are organized

into a histogram representing the overall facial features.

This histogram contains the frequency of binary

patterns found in the face blocks. This histogram

becomes the feature vector that can be used to match

someone's face with stored facial data.

Figure 12. The test results for face recognition offline.

The graph in Figure 12 shows the results of face

recognition testing using the LBPH (Local Binary

Patterns Histograms) algorithm in two different

scenarios: offline and real-time recognition. In the

offline testing, one face data is selected from a dataset

containing 50 faces and then matched one by one with

all the faces in the dataset shown in Table 3. The graph

shows that the confidence level in offline face

recognition varies between 80.5% and 85.5% with an

average of 83.6%. The fluctuations observed reflect

variations in the quality or similarity of faces in the

dataset, with some significant drops indicating that

certain faces may have weaker or different features

compared to others in the dataset.

Table 3. The test results for face recognition offline.

No Dataset

Image

Confidence

(%)

Time Taken

(S)

1 face_0,jpg 83,43 0,014

2 face_1,jpg 84,33 0,0152

3 face_2,jpg 84,13 0,014

4 face_3,jpg 84,41 0,015

5 face_4,jpg 84,06 0,015

6 face_5,jpg 84,87 0,0141

7 face_6,jpg 84,21 0,0163

8 face_7,jpg 83,3 0,0171

9 face_8,jpg 84,23 0,0153

10 face_9,jpg 83,8 0,0161

11 face_10,jpg 85,08 0,0183

12 face_11,jpg 84,59 0,0162

13 face_12,jpg 84,59 0,0161

14 face_13,jpg 85,09 0,0152

15 face_14,jpg 84,88 0,0151

16 face_15,jpg 84,58 0,0161

No Dataset

Image

Confidence

(%)

Time Taken

(S)

17 face_16,jpg 83,96 0,014

18 face_17,jpg 84,95 0,0132

19 face_18,jpg 85,27 0,0171

20 face_19,jpg 84,71 0,0141

21 face_20,jpg 84,47 0,0142

22 face_21,jpg 84,52 0,0141

23 face_22,jpg 84,38 0,0141

24 face_23,jpg 84,11 0,0141

25 face_24,jpg 81,55 0,0132

26 face_25,jpg 81,11 0,0142

27 face_26,jpg 82,34 0,0151

28 face_27,jpg 83,42 0,0142

29 face_28,jpg 82,91 0,0143

30 face_29,jpg 83,34 0,0134

31 face_30,jpg 82,37 0,0141

32 face_31,jpg 82,31 0,0143

33 face_32,jpg 83,5 0,0141

34 face_33,jpg 82,36 0,0151

35 face_34,jpg 83,41 0,014

36 face_35,jpg 83,17 0,0142

37 face_36,jpg 82,64 0,0152

38 face_37,jpg 82,37 0,0133

39 face_38,jpg 82,62 0,0142

40 face_39,jpg 82,66 0,0141

41 face_40,jpg 82,59 0,0142

42 face_41,jpg 83,33 0,0131

43 face_42,jpg 82,04 0,0141

44 face_43,jpg 83,44 0,0142

45 face_44,jpg 83,92 0,0142

46 face_45,jpg 83,86 0,0152

47 face_46,jpg 83,1 0,017

48 face_47,jpg 83,55 0,0141

49 face_48,jpg 83 0,0143

50 face_49,jpg 83,28 0,0142

Average 83,6028 0,014712

Meanwhile, in real-time testing, the face captured every

second is directly matched with the 50 face data in the

same dataset shown in Table 4. The graph in Figure 13

on the right shows confidence levels ranging from 72%

to 81% with an average of 77.67%. The greater

fluctuations in this graph indicate that changes in

conditions during image capture, such as lighting,

position, or facial expression, greatly affect the

accuracy of recognition. Overall, offline recognition

appears more stable compared to real-time, although

both suggest that the quality of facial images and

environmental conditions are crucial to achieving more

accurate and consistent recognition results.

Table 4. The test results for face recognition in real-time.

No
Dataset

Image

Confidence

(%)

Time

Taken(s)

1 face_0,jpg 75,51 0,0205

2 face_1,jpg 78,75 0,02

3 face_2,jpg 78,26 0,019

4 face_3,jpg 79,62 0,018

5 face_4,jpg 77,96 0,018

6 face_5,jpg 78,87 0,0188

7 face_6,jpg 78,69 0,021

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

C
o
n

fi
d
an

ce
 (

%
)

Dataset

Recognition Offline

Racognition

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 727

No
Dataset

Image

Confidence

(%)

Time

Taken(s)

8 face_7,jpg 77,81 0,0205

9 face_8,jpg 77,97 0,022

10 face_9,jpg 78,87 0,02

11 face_10,jpg 77,23 0,021

12 face_11,jpg 77,64 0,019

13 face_12,jpg 78,02 0,019

14 face_13,jpg 76,56 0,019

15 face_14,jpg 75,9 0,0195

16 face_15,jpg 77,07 0,021

17 face_16,jpg 77,78 0,0165

18 face_17,jpg 77,06 0,02

19 face_18,jpg 78,06 0,019

20 face_19,jpg 77,4 0,0195

21 face_20,jpg 76,5 0,022

22 face_21,jpg 76,42 0,021

23 face_22,jpg 76,61 0,022

24 face_23,jpg 76,52 0,0209

25 face_24,jpg 73,26 0,0207

26 face_25,jpg 73,54 0,0195

27 face_26,jpg 75,12 0,019

28 face_27,jpg 77,15 0,017

29 face_28,jpg 76,61 0,02

30 face_29,jpg 78,38 0,029

31 face_30,jpg 77,54 0,045

32 face_31,jpg 78,89 0,0185

33 face_32,jpg 78,58 0,019

34 face_33,jpg 77,49 0,0204

35 face_34,jpg 78,48 0,019

36 face_35,jpg 77,03 0,019

37 face_36,jpg 79,27 0,021

38 face_37,jpg 77,55 0,019

39 face_38,jpg 78,75 0,021

40 face_39,jpg 78,97 0,02

41 face_40,jpg 78,88 0,0175

42 face_41,jpg 78,12 0,0815

43 face_42,jpg 78,76 0,019

44 face_43,jpg 79,22 0,052

45 face_44,jpg 77,91 0,018

46 face_45,jpg 78,45 0,019

47 face_46,jpg 77,2 0,02

48 face_47,jpg 78,36 0,023

49 face_48,jpg 79,17 0,019

50 face_49,jpg 79,91 0,019

Average 77,6734 0,022246

Figure 13. The test results for face recognition realtime.

3.2 Face Tracker Evaluation

Table 5 shows the results of an experiment with a robot

designed to follow a face. The face position is displayed

in the form of pixel coordinates X and Y taken from the

camera. For example, in the first row, the face position

is detected at X = 302 and Y = 212. The camera captures

the face at that point. The robot's servo then adjusts its

position based on the face movement. In the first

example, the servo does not need to move because the

face is already centered. However, in the second row,

the face shifts to X = 459 and Y = 204, so the servo

changes its position to X = 137° and Y = 79° to follow

the movement to the upper right.

Table 5. The test results for face tracker.

Position

Face

Position

(pixel)

Servo

Position (°)

Move

ment Time

(s)

x y x y x y

302 212 110 90 C C 0

459 204 137 79 R U 2.314

399 278 132 96 L D 1.945

518 342 139 105 R D 2.952

219 302 91 94 L U 3.561

391 159 119 82 R U 3.013

The robot also moves to align with the face's direction.

In the second example, the face is detected on the right

and upward, so the robot moves to the right and upward

to adjust its position. The time taken to adjust the face

back to the center position is also recorded. In the

second row, the robot takes 2.314 seconds to make this

adjustment. Additionally, images captured by the

camera are included for each position change, providing

visual confirmation that the robot is accurately

following the face movement. This table illustrates how

the robot reacts to face movements, adjusts its servo

positions, and records the time needed to center the face

back on the screen.

3.3 Discussions

The results of testing the face recognition system using

the Local Binary Patterns Histogram (LBPH) algorithm

indicate that this method can provide an adequate level

of accuracy in both offline and real-time modes,

72

74

76

78

80

82

0 10 20 30 40 50 60

C
o

n
fi

d
an

ce
 (

5
)

Time (s)

Recognition Realtime

Recognition

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 728

although several factors influence system performance.

In offline testing, an average accuracy of 83.6% shows

that LBPH can recognize faces well when the database

facial data has high quality and uniformity. Accuracy

fluctuations ranging from 80.5% to 85.5% suggest

variability in face recognition, which could be caused

by differences in perspective or lighting in the dataset.

Real-time testing, with an average accuracy of 77.67%,

reveals that environmental dynamics such as changes in

lighting and facial expressions directly affect the results

of face recognition shown in Table 6.

Table 6. Results of the comparison between offline and real-time

face recognition.

Mode

Minimum

Accuracy

(%)

Maximum

Accuracy

(%)

Average

Accuracy

(%)

Offline 80.5 85.5 83.6

Real-time 72.0 81.0 77.67

This indicates that the system is more sensitive to

changing real-time conditions, which is a common

challenge in direct face recognition applications. The

difference in processing times between offline and

online modes is primarily due to the computational load

involved in real-time image acquisition and processing.

In offline mode, pre-captured images are already stored

in memory, allowing the system to focus solely on

recognition tasks, leading to more consistent processing

times. However, in online mode, the system must

simultaneously handle image acquisition, pre-

processing (grayscale conversion, noise reduction, and

contrast adjustment), and recognition. Factors such as

varying lighting conditions and rapid facial movements

can add additional processing time, resulting in

increased variability in response times.

On the other hand, the servo movements in the robot

designed to follow the user's face showed positive

results, with response times ranging from 1.945 seconds

to 3.561 seconds. This demonstrates that the robot can

adjust its position quickly and accurately, enabling

more natural interaction between the robot and the user.

Although these results are satisfactory, there is room for

further improvements, particularly in optimizing the

system to handle more challenging environmental

conditions and to speed up the robot's response time.

Overall, this study successfully demonstrates the great

potential of implementing face recognition systems in

receptionist robots, though there is still room for

refinement to address various practical challenges in the

field.

4. Conclusions

This research successfully developed a memory-

efficient face recognition system using the Local Binary

Patterns Histogram (LBPH) algorithm implemented on

a Raspberry Pi-based receptionist robot. The test results

show that the LBPH algorithm is capable of providing

good face recognition accuracy, with an average

accuracy of 83.6% in offline mode and 77.67% in real-

time mode. Nonetheless, the system is still affected by

environmental changes such as lighting and facial

expressions, which affect recognition accuracy.

Additionally, the designed robot is capable of

accurately following the user's facial movements, with

a fairly fast servo response time of between 1.945

seconds and 3.561 seconds, supporting responsive and

natural interaction with the user. Although the results

are satisfactory, this research identifies several areas for

improvement, such as further optimization for handling

dynamic environmental conditions and improving the

robot's response speed. Overall, the developed system

shows great potential for implementation in interactive

and efficient receptionist robot applications.

Acknowledgements

This research has received funding from the Directorate

of Research, Technology and Community Service,

Directorate General of Higher Education, Research and

Technology, Ministry of Education, Culture, Research

and Technology (grant agreement

104/E5/PG.02.00.PL/2024, 1100/LL2/KP/PL/2024).

The authors thank Universitas Bina Darma for its

support and facilities.

References

[1] N. Li et al., “Chinese Face Dataset for Face Recognition in an

Uncontrolled Classroom ENVIRONMENT,” IEEE Access, vol.

11, 2023, doi: 10.1109/ACCESS.2023.3302919.

[2] R. He, J. Cao, L. Song, Z. Sun, and T. Tan, “Adversarial

Cross-Spectral Face Completion for NIR-VIS Face

Recognition,” IEEE Trans Pattern Anal Mach Intell, vol. 42,

no. 5, 2020, doi: 10.1109/TPAMI.2019.2961900.

[3] J. Tomášik et al., “The Potential of AI-Powered Face

Enhancement Technologies in Face-Driven Orthodontic

Treatment Planning,” Applied Sciences 2024, Vol. 14, Page

7837, vol. 14, no. 17, p. 7837, Sep. 2024, doi:

10.3390/APP14177837.

[4] P. C. P. Neto, J. R. Pinto, F. Boutros, N. Damer, A. F.

Sequeira, and J. S. Cardoso, “Beyond Masks: On the

Generalization of Masked Face Recognition Models to

Occluded Face Recognition,” IEEE Access, vol. 10, 2022,

doi: 10.1109/ACCESS.2022.3199014.

[5] H. Yu, Y. Wang, Y. Tian, H. Zhang, W. Zheng, and F. Y.

Wang, “Social Vision for Intelligent Vehicles: From

Computer Vision to Foundation Vision,” IEEE Transactions

on Intelligent Vehicles, vol. 8, no. 11, pp. 4474–4476, Nov.

2023, doi: 10.1109/TIV.2023.3330870.

[6] W. Sun, X. Min, D. Tu, S. Ma, and G. Zhai, “Blind Quality

Assessment for in-the-Wild Images via Hierarchical Feature

Fusion and Iterative Mixed Database Training,” IEEE Journal

on Selected Topics in Signal Processing, vol. 17, no. 6, pp.

1178–1192, Nov. 2023, doi: 10.1109/JSTSP.2023.3270621.

[7] K. Panetta et al., “A Comprehensive Database for

Benchmarking Imaging Systems,” IEEE Trans Pattern Anal

Mach Intell, vol. 42, no. 3, pp. 509–520, Mar. 2020, doi:

10.1109/TPAMI.2018.2884458.

[8] Y. Zhong et al., “Dynamic Training Data Dropout for Robust

Deep Face Recognition,” IEEE Trans Multimedia, vol. 24, pp.

1186–1197, 2022, doi: 10.1109/TMM.2021.3123478.

[9] C. WANG, “A Comparative Statement for the Facial

Recognition Algorithm Via Eigenfaces and the Local Binary

Patterns Histograms Algorithm,” i-manager’s Journal on

Software Engineering, vol. 15, no. 4, p. 1, Apr. 2021, doi:

10.26634/JSE.15.4.18429.

[10] I. Al Saidi, M. Rziza, and J. Debayle, “A novel texture

descriptor: Homogeneous Rotated Local Binary Pattern

(HRLBP),” 2020 10th International Symposium on Signal,

Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 729

Image, Video and Communications, ISIVC 2020, Apr. 2021,

doi: 10.1109/ISIVC49222.2021.9487538.

[11] S. Chakraborty, S. K. Singh, and K. Kumar, “Facial Biometric

System for Recognition Using Extended LGHP Algorithm on

Raspberry Pi,” IEEE Sens J, vol. 20, no. 14, pp. 8117–8127,

Jul. 2020, doi: 10.1109/JSEN.2020.2979907.

[12] Z. Al-Ameen, H. N. Saeed, and D. K. Saeed, “Fast and

Efficient Algorithm for Contrast Enhancement of Color

Images,” Review of Computer Engineering Studies, vol. 7, no.

3, p. 60, Sep. 2020, doi: 10.18280/RCES.070303.

[13] D. Shehada, A. Turky, W. Khan, B. Khan, and A. Hussain,

“A Lightweight Facial Emotion Recognition System Using

Partial Transfer Learning for Visually Impaired People,”

IEEE Access, vol. 11, pp. 36961–36969, 2023, doi:

10.1109/ACCESS.2023.3264268.

[14] H. Gong, L. Chen, C. Li, J. Zeng, X. Tao, and Y. Wang,

“Online Tracking and Relocation Based on a New Rotation-

Invariant Haar-Like Statistical Descriptor in Endoscopic

Examination,” IEEE Access, vol. 8, pp. 101867–101883,

2020, doi: 10.1109/ACCESS.2020.2994440.

[15] Y. Guo, Q. Xu, Y. Su, S. J.-I. Access, and undefined 2020,

“Visibility detection based on the recognition of the preceding

vehicle’s taillight signals,” ieeexplore.ieee.orgY Guo, Q Xu, Y

Su, S JiangIEEE Access, 2020•ieeexplore.ieee.org, Accessed:

Sep. 14, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9257398/

[16] S. Liu, J. Chen, … S. R. C. and S. for V., and undefined 2019,

“A new multi-focus image fusion algorithm and its efficient

implementation,” ieeexplore.ieee.orgS Liu, J Chen, S

RahardjaIEEE Transactions on Circuits and Systems for

Video Technology, 2019•ieeexplore.ieee.org, Accessed: Sep.

14, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8653405/

[17] K. Chen, T. Yi, Q. L.-I. S. P. Letters, and undefined 2021,

“Lightqnet: Lightweight deep face quality assessment for

risk-controlled face recognition,” ieeexplore.ieee.orgK Chen,

T Yi, Q LvIEEE Signal Processing Letters,

2021•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online].

Available:

https://ieeexplore.ieee.org/abstract/document/9528058/

[18] D. Kim, J. Hyun, and B. Moon, “Memory-efficient

architecture for contrast enhancement and integral image

computation,” 2020 International Conference on Electronics,

Information, and Communication, ICEIC 2020, Jan. 2020,

doi: 10.1109/ICEIC49074.2020.9051296.

[19] A. H. Diab, I. T. Ahmed, and W. M. Jasim, “Analyze the

Existing Contrast Enhancement Algorithms and Image

Quality Assessment: Survey,” AIP Conf Proc, vol. 3009, no.

1, Feb. 2024, doi: 10.1063/5.0193832/3265139.

[20] G. Ghosh and K. S. Swarnalatha, “A Detail Analysis and

Implementation of Haar Cascade Classifier,” pp. 341–359,

2022, doi: 10.1007/978-981-16-3342-3_28.

[21] W. El-Tarhouni, A. Abdo, and A. Elmegreisi, “Feature fusion

using the Local Binary Pattern Histogram Fourier and the

Pyramid Histogram of Feature fusion using the Local Binary

Pattern Oriented Gradient in iris recognition,” in 2021 IEEE

1st International Maghreb Meeting of the Conference on

Sciences and Techniques of Automatic Control and Computer

Engineering, MI-STA 2021 - Proceedings, 2021. doi:

10.1109/MI-STA52233.2021.9464473.

[22] D. Loktev, A. Loktev, R. Stepanov, M. Faisal, and E. M.

Zamzami, “Comparative Analysis of Inter-Centroid K-Means

Performance using Euclidean Distance, Canberra Distance

and Manhattan Distance,” J Phys Conf Ser, vol. 1566, no. 1,

p. 012112, Jun. 2020, doi: 10.1088/1742-

6596/1566/1/012112.

