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Abstract  

This research aims to develop a memory-efficient face recognition system for a receptionist robot using the Local 

Binary Patterns Histogram (LBPH) algorithm. Given the computational limitations of the Raspberry Pi, the system 

utilizes optimization techniques including grayscale conversion, noise reduction, and contrast adjustment to 

enhance processing efficiency. Testing demonstrates that the face recognition accuracy achieves 80.5% to 85.5% 

in offline mode, and 72% to 81% in real-time mode, with variations due to lighting conditions and facial 

expressions. The robot's servo motors exhibit a response time between 1.945 and 3.561 seconds, enabling 

responsive and interactive user engagement. The results suggest practical benefits for deploying face recognition 

in resource-constrained environments, enhancing the efficiency of robotic receptionist applications. 
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1. Introduction  

Face recognition is one of the key components in the 

development of artificial intelligence [1], [2]. In 

everyday life, humans naturally recognize others' faces 

simply by observing their eyes and facial features. This 

information is then stored in the brain, allowing us to 

identify individuals in future encounters. In the field of 

technology, the concept of face recognition has been 

widely adopted for various purposes, such as 

communication, identity verification, and attendance 

systems [3], [4]. 

Facial recognition is part of a broader field known as 

computer vision, which is a technology that enables 

computers to see, detect, and process images like human 

vision [5]. Computer vision forms the foundation for 

many automation applications requiring visual analysis, 

including facial recognition. In this context, facial 

recognition works by identifying unique features on a 

person's face, such as the eyes, nose, and mouth, which 

are then processed and stored in a database [6], [7], [8]. 

When the system scans a face, this data is compared to 

the existing database to identify and verify the 

individual's identity. 

Various techniques in computer vision have been 

developed for facial recognition, such as Viola-Jones, 

Eigenfaces, Fisherface, and Local Binary Patterns 

Histograms (LBPH)[9]. Each technique has its 

advantages and disadvantages, as well as different 

applications depending on specific needs [10]. 

Compared to other computer vision techniques, such as 

Eigenfaces and Fisherface, the LBPH algorithm 

demonstrates superior performance in environments 

with limited computational resources, such as 

Raspberry Pi. Unlike Eigenfaces, which are sensitive to 

variations in lighting, or Fisherfaces, which require 

more extensive training data, LBPH is more robust in 

handling diverse lighting conditions and requires less 

memory [9], [11], [12]. This makes LBPH an ideal 

choice for real-time face recognition in constrained 

environments where computational efficiency is a 

priority(1). This method uses local binary patterns to 

analyze the texture of an image, where pixel intensity 

https://doi.org/10.29207/resti.v8i6.6048


Endang Darmawan Yudi, Yesi Novaria Kunang, Ahmad Zarkasi 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 720 

 

values are compared with their neighbors to generate a 

binary pattern. LBPH then divides the image into 

several blocks, calculates the binary pattern histogram 

for each block, and uses this information to recognize 

the face. 

The development of technology in this research 

encompasses an in-depth study of facial recognition 

technology, the use of Raspberry Pi 3 in system 

development [11], [13] and the latest innovations in the 

implementation of receptionist robots. The novelty of 

this research lies in the integration of these three 

aspects, with an emphasis on memory efficiency on the 

Raspberry Pi 3. Although various related studies exist, 

such as the work by Hossain on Local Binary Patterns 

Histogram (LBPH) [14], which demonstrates that this 

algorithm can provide good results in facial recognition 

by utilizing texture information, this research 

introduces a new concept to enhance memory 

management efficiency on the Raspberry Pi 3 in the 

context of facial recognition for receptionist robots.  

LBPH was chosen in this study due to its ability to 

utilize smaller data sources compared to other 

algorithms, such as Eigenfaces or Fisherfaces, making 

it more suitable for resource-constrained devices like 

the Raspberry Pi. The Raspberry Pi, which has 

limitations in computational power and memory 

capacity, requires an algorithm that is efficient in data 

processing, and LBPH meets this need. While LBPH 

may be less robust to changes in viewpoint or pose, its 

advantages in data efficiency and performance make it 

superior for real-time applications on platforms with 

limited resources. 

In this research, we will implement facial recognition 

technology using the Raspberry Pi as the main 

processing unit. Due to the resource constraints of the 

Raspberry Pi, efficient programming methods and 

approaches are necessary in terms of memory usage and 

overall efficiency. The system will use features such as 

Haar to detect facial features like eyes and mouth before 

applying the LBPH algorithm for complete facial 

recognition [15], [16]. By utilizing an efficient data 

algorithm, the output of this system will be applied to 

the receptionist robot, which is capable of greeting 

guests or providing necessary information, making it 

more interactive and efficient in carrying out 

receptionist tasks.  

2. Research Methods 

The overall flow of the LBPH algorithm-based facial 

recognition robot can be seen in Figure 1. The system 

begins with the process of face detection through a 

connected camera. Once a face is detected, the system 

automatically runs the LBPH (Local Binary Patterns 

Histogram) Face Recognition algorithm to identify 

whether the face is already in the database or dataset 

that stores data of previous guests. 

If the LBPH algorithm finds that the face is already 

registered in the dataset, the next step is to display the 

corresponding guest's name. The name is retrieved from 

the dataset based on facial identification. After the 

guest’s name is displayed, the system will proceed by 

asking if the guest would like to perform a check-out 

process. Check-out indicates that the guest has 

completed their visit and wishes to remove their data 

from the system. If the guest opts for check-out, the 

system will delete all data related to the guest's face 

from the dataset, ensuring that no personal information 

is stored longer than necessary. Once the data deletion 

is complete, the system ends the process. If the 

registered guest does not choose to check out, the 

system will make no changes to the dataset and will 

return to waiting for the next face detection, repeating 

the cycle. 

On the other hand, if the detected face is not found in 

the dataset, the system recognizes that the guest is not 

yet registered. At this point, the system will offer the 

guest the option to check-in. Check-in is the process of 

registering a new guest into the system. If the guest 

chooses to check in, the first step is to ask the guest to 

enter their name. This name is required to associate the 

identity with the facial data that will be stored. 

The decision to capture 50 images of each individual is 

based on the need to enhance the variability of the facial 

data. By taking multiple images from different angles 

and with slight variations in lighting and expressions, 

the system builds a more comprehensive dataset for 

each person. This approach helps improve the 

recognition accuracy and ensures that the model is 

robust enough to handle minor changes in the face's 

appearance during real-time recognition. 

After the guest's name is entered, the system will then 

capture 50 images of the guest’s face. The image 

capture is done gradually to ensure that the system has 

enough image variation to improve accuracy in 

recognizing the guest's face in the future. Each captured 

image will be stored in a special folder named after the 

newly entered guest. While this study did not 

implement data augmentation techniques, such as 

flipping, rotation, or adding noise to the images, using 

these methods could potentially increase the variability 

of the dataset. Augmented data can help the system 

generalize better by simulating different real-world 

conditions, thus enhancing the robustness of face 

recognition even further. 

Once the 50 facial images are successfully captured and 

saved, the guest has successfully checked in. Their 

facial data is now in the dataset and will be used for 

verification in future instances. After the check-in 

process is complete, the system returns to its initial 

state, ready to detect the next face. However, if the guest 

whose face is not in the dataset chooses not to check in, 

the system will end the process and return to the initial 

stage, waiting for the next face detection without storing 

any data.  

Overall, this system leverages the LBPH algorithm for 

facial recognition with a high level of accuracy and 
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efficiently manages guest data through automated 

check-in and check-out processes. In this way, the 

system can handle both new and registered guests in an 

easy, secure, and structured manner. 

 

Figure 1. Flowchart System 

2.1 Facial Recognition 

The detailed flow of the facial recognition embedded in 

the robot can be seen in Figure 2. The program design 

system starts by converting the previously colored 

(RGB) image into a grayscale using Equation 1. 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =
𝑅+𝐺+𝐵

3
                 (1)       

 

Figure 2. Facial processing workflow 

In a colored image, each pixel consists of three-color 

components: red (R), green (G), and blue (B). To obtain 

the grayscale value, this equation calculates the average 

of these three-color components. In other words: 𝑅 is 

the red intensity value, 𝐺 is the green intensity value, 

and 𝐵 is the blue intensity value. The equation sums the 

red, green, and blue intensity values, then divides the 

total by 3 to obtain the grayscale value [17]. This value 

represents the brightness of the pixel, where 0 is black 

and 255 is white on an 8-bit scale. This process is 

essential because a grayscale image reduces data 

complexity by using only one-color channel, making it 

more efficient for processing. 

After conversion, resizing or normalization and 

adjustment of the size are performed to ensure the 

image is on a uniform scale, avoiding differences in face 

size that could affect detection accuracy. To resize an 

image mathematically, interpolation formulas can be 

used. There are several interpolation methods available, 

but one of the most common is bilinear interpolation. 

Suppose we want to resize an image from 𝑊 × 𝐻 to  

𝑊′× 𝐻′. A point on the original image at coordinates (x, 

y) will be mapped to a new point on the resized image. 

The new coordinates on the resized image are (𝑥', 𝑦′) as 

shown in Equations 2 and 3. 

x ′ =
x 

𝑊
 × 𝑊′               (2) 

y ′ =
y 

𝐻
 × 𝐻′               (3) 

The point (𝑥′, 𝑦′) on the new image may not align 

exactly with the pixel grid of the resized image. To 

obtain the pixel value at this point, we use bilinear 

interpolation. Suppose (𝑥1, 𝑦1), (𝑥2, 𝑦1), (𝑥1, 𝑦2) and 
(𝑥2, 𝑦2) are the coordinates of the pixels on the original 

image surrounding the point (𝑥′, 𝑦′), with pixel 

intensities 𝐼(𝑥1, 𝑦1), 𝐼(𝑥2, 𝑦1), 𝐼(𝑥1, 𝑦2), and 𝐼(𝑥2, 𝑦2). 

Horizontal interpolation is performed using Equations 4 

and 5. 

𝐼𝑥′,𝑦1 = 𝐼(𝑥1, 𝑦1) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦1) × 𝛼            (4) 

𝐼𝑥′,𝑦2 = 𝐼(𝑥1, 𝑦2) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦2) × 𝛼            (5) 

α is 𝑥′ - 𝑥1 (horizontal projection). 

Vertical interpolation is performed using Equation 6. 

𝐼(𝑥′, 𝑦′) ,   = 𝐼𝑥′,𝑦1 × (1 − 𝛽) + 𝐼𝑥′,𝑦2 × 𝛽               (6) 

 β is 𝑦′ - 𝑦1 (vertical projection). 

Then, the noise removal and lighting correction stages 

are performed to improve image quality, ensuring that 

the image is free from disturbances that could affect 

facial recognition accuracy. A Gaussian filter is used to 

smooth the image and reduce noise by averaging the 

intensity of surrounding pixels. This filter uses a 

Gaussian function, given by Equation 7. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+ 𝑦2

2𝜎2               (7) 

𝜎 is the standard deviation of the Gaussian distribution. 

This function assigns greater weight to pixels close to 

the center of the filter window and smaller weight to 

pixels further away. Convolving the image with the 

Gaussian kernel results in a smoother image by 

reducing noise and unwanted fine details. 

Contrast adjustment aims to enhance the difference 

between light and dark areas in the image to make 

details more distinct [12]. This is achieved by 

modifying the pixel intensity scale using Equation 8. 

𝐼′(𝑥, 𝑦) = 𝛼𝐼(𝑥, 𝑦) + 𝛽              (8) 

𝛼 is the contrast factor and 𝛽 is the brightness offset. A 

contrast factor 𝛼 greater than 1 will increase the 
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contrast, making dark areas darker and light areas 

lighter, while the offset 𝛽 shifts the pixel intensity 

range, increasing or decreasing overall brightness. By 

applying this adjustment, the image will have optimal 

contrast, making features more prominent and easier to 

analyze. 

The next step is to compute the integral image, which 

helps speed up the computation process for feature 

recognition [18]. The integral image, also known as the 

summed-area table, is a highly useful technique for 

accelerating feature calculations in image processing. 

This technique allows for very efficient computation of 

the sum of pixels in a rectangular area. The integral 

image Iint(x, y) at position (x, y) is defined as the sum 

of all pixel intensities in the top-left part of the image 

up to that position [19], calculated using Equations 9. 

𝐼𝑖𝑛𝑡(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑦
𝑗=0

𝑥
𝑖=0              (9) 

𝐼(𝑖, 𝑗) is the pixel intensity at the position (𝑖, 𝑗) in the 

original image. Once the integral image is computed, 

the sum of pixels in a rectangular area with the top-left 

corner at (𝑥1, 𝑦1) and the bottom-right corner at (𝑥2, 𝑦2)  

can be calculated using Equation 10. 

𝑠𝑢𝑚(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝐼𝑖𝑛𝑡(𝑥2, 𝑦2) − 𝐼𝑖𝑛𝑡(𝑥1 − 1, 𝑦2) −

𝐼𝑖𝑛𝑡(𝑥2, 𝑦2 − 1) + 𝐼𝑖𝑛𝑡(𝑥1 − 1, 𝑦1 − 1)                          (10) 

This equation allows for the calculation of the sum of 

pixels in constant time 𝑂(1), which is highly efficient 

compared to traditional methods. With the integral 

image, you can accelerate the computation process for 

feature recognition, such as in face detection, making 

the image analysis process much faster and more 

efficient. 

Using the Haar Cascade Classifier faces in an image are 

identified through filtering techniques that search for 

specific patterns or features on the face [20]. Haar 

features work by comparing bright and dark rectangular 

areas in the image, where the pixel intensity in the 

brighter area is subtracted from the pixel intensity in the 

darker area. This feature is expressed in Equation 11. 

𝐹 = ∑ 𝐼(𝑥, 𝑦)𝑎𝑟𝑒𝑎 𝑝𝑢𝑡𝑖ℎ − ∑ 𝐼(𝑥, 𝑦)𝑎𝑟𝑒𝑎 ℎ𝑖𝑡𝑎𝑚          (11) 

 𝐼 (𝑥, 𝑦) is the pixel intensity at position (𝑥, 𝑦). To 

accelerate the computation of Haar features, the integral 

image is used, which enables efficient calculation of 

pixel intensity sums in rectangular areas. The method is 

then trained using the AdaBoost algorithm, which 

selects the most important Haar features from the 

numerous available features. Each feature is used to 

form a weak classifier, and the combination of these 

weak classifiers creates a strong classifier that is more 

accurate in detecting objects. The Haar Cascade also 

employs a cascading structure, where the image is 

processed through multiple stages of classifiers. If an 

area fails to be detected as an object at an early stage, it 

is immediately discarded, thus speeding up the 

detection process. This method is known for its 

efficiency in image processing because it combines 

Haar features with the AdaBoost algorithm and cascade 

structure, making it one of the fast and accurate facial 

detection methods. 

Once a face is detected, the system displays the face 

using Cascade Classification and also calculates the 

position of the face captured by the camera. At this 

stage, the system will adjust the servo motors on the 

robot to direct the camera, which is positioned where 

the robot's eyes are, to always face the detected face. 

The servo motors are used to control the movement 

along the x and y axes, ensuring that the user's face 

remains at the center of the robot's camera. This process 

is repeated to continuously monitor the face. 

The Local Binary Pattern Histogram (LBPH) method is 

an approach used for facial recognition by utilizing 

local texture patterns. The process begins by converting 

the face image to grayscale, which simplifies the data 

being processed by focusing on the light intensity of 

each pixel [10]. Then, the Local Binary Pattern (LBP) 

algorithm is applied, which compares each central pixel 

with its surrounding neighbors in a 3x3 block as shown 

in Equation 12. A binary pattern is generated based on 

the pixel intensity comparison, where a value of 1 is 

assigned if the neighboring pixel is greater than or equal 

to the central pixel, and a value of 0 if it is smaller. 

𝐿𝐵𝑃 = ∑ 𝑠(𝑁𝑖 − 𝑃) . 2𝑖𝑘−1
𝑖=0            (12) 

𝑠(𝑥) 𝑖𝑠 1 if 𝑥 ≥ 0, and 𝑠(𝑥) 𝑖𝑠 0 if 𝑥 < 0, 𝑁𝑖 is the 

intensity of the i-th neighboring pixel, 𝑃 is the intensity 

of the central pixel. 

After the LBP pattern is computed for all pixels in the 

image, the face image is divided into several small 

blocks, and the histogram of LBP values is computed 

for each block. This histogram represents the frequency 

of occurrence of LBP patterns within that block, and the 

histograms from each block are then combined to form 

a global histogram that describes the entire face [21] as 

shown in Equation 13. 

𝐻(𝑗) = ∑ 𝐼(𝐿𝐵𝑃(𝑥, 𝑦) = 𝑗)𝑥,𝑦            (13) 

𝐻(𝑗)  is the histogram value for the LBP pattern -𝑗,  𝐼  

is the indicator function that equals 1 if 𝐿𝐵𝑃(𝑥, 𝑦) = 𝑗, 

and 0 otherwise,  𝑥 and 𝑦 are the pixel coordinates 

within the block. 

After the new face histogram is calculated, the next step 

is to compare it with the histogram stored in the 

database. This comparison is often done using 

Euclidean distance, which measures the distance 

between two face histograms [22] as shown in Equation 

14. 

𝑑(𝐻1, 𝐻2) = √∑ (𝐻1(𝑖) − 𝐻2(𝑖))2𝑛
𝑖=1           (14) 

𝐻1 and 𝐻2 are the histograms of two face images, 𝑛 is 

the number of elements in the histogram. 

If the Euclidean distance between the new image 

histogram and one of the histograms in the database is 

small, the new face is recognized as a registered face. 

This process allows for LBPH-based facial recognition 
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to be performed accurately and efficiently, despite its 

simplicity. 

2.2 Robot Development 

This project involves the development of an interactive 

robot consisting of several key components such as a 

Raspberry Pi 3, camera, keyboard, monitor, Arduino 

Uno, and servo motors (see Figure 3). The Raspberry Pi 

3 acts as the processing hub, running the facial 

recognition program using a camera placed in the 

robot's eye section. This camera is used to detect and 

track the user's face in real-time. The keyboard 

functions as the user data input, while the monitor 

provides a visual interface that displays the results of 

facial recognition or other interactions. 

The Arduino Uno is used as the main controller to 

operate two servo motors that control the X and Y axes 

of the robot's head. These servos enable the robot's head 

to follow the user's movements, ensuring that the 

camera remains directed at the user's face. In the robot's 

physical design, as shown in the diagram, the robot's 

head is made from 3D-printed materials with the servo 

system embedded inside (see Figure 4). These servos 

enable mechanical movement of the eyes and head to 

follow the user's movements, creating a more natural 

interaction. 

 

Figure 3. Schematic Robot 

 

Figure 4. Robot Design 

The camera mounted in one of the robot's eyes is 

connected to the facial recognition system on the 

Raspberry Pi. After detecting a face, the system sends a 

signal to the Arduino to control the servo motors, 

enabling the robot's head and eyes to follow the user's 

movements. With this design, the robot is capable of 

mimicking human movements in a more interactive and 

responsive manner, providing a more realistic 

experience in facial recognition and tracking. 

3. Results and Discussions 

In this section, we will explore the results of various 

tests and analyses conducted using methods appropriate 

to their respective scales. 

3.1 Face Recognition Result 

The first test involves converting an initially colored 

(RGB) image into a black-and-white (grayscale) image 

to simplify image processing and improve 

computational efficiency. 

 

Figure 5. RGB to Grayscale 

The conversion process from RGB to grayscale for a 

296x296 pixel image begins by extracting the RGB 

values from each pixel in the image (Figure 5). For 

example, at a pixel with coordinates (x, y) = (209, 123), 

the RGB values are (175, 90, 121), where 175 is the red 

channel value, 90 is the green channel value, and 121 is 

the blue channel value. The first step in the conversion 

is to calculate the grayscale value for this pixel using 

the standard conversion formula, which takes into 

account the relative contribution of each color channel. 

Equation (1) will be used for this calculation. 

After the calculation, the grayscale value obtained for 

the pixel (x, y) = (209, 123) is approximately 127. As a 

result, in the new grayscale image, the pixel at the same 

coordinates (209, 123) will have an intensity value of 

127. This process is repeated for each pixel in the 

255x255 image, resulting in a grayscale image of the 

same dimensions, where each pixel has a single 

grayscale intensity value instead of the three RGB color 

values. The process continues for each pixel until every 

pixel in the color image is converted to grayscale. In this 

way, the initially 255x255 RGB image is transformed 

into a grayscale image of the same dimensions, but with 

color information replaced by grayscale intensity values 

(see Figure 6). 
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The next step is to resize the image, where the 

previously grayscale-converted image of 296x296 

pixels is resized to 255x255 pixels. To resize the image 

from 296x296 pixels to 255x255 pixels manually, we 

can use interpolation methods, one of which is a nearest 

neighbor interpolation. For each point (𝑥, 𝑦) in the 

original image, we calculate the new position (𝑥′, 𝑦′) 

using Equations 2 and 3. 

 

Figure 6. the RGB conversion to a 3x3 Grayscale value 

After calculating 𝑥′ and 𝑦′, we use bilinear interpolation 

to determine the pixel intensity value at (𝑥′, 𝑦′). If (129, 

129) is the nearest coordinate in the new pixel grid, we 

use the four nearest pixels from the original image to 

compute the intensity value at this position. Since the 

coordinates (𝑥′, 𝑦′)  =  (129.39, 129.39) do not fall 

exactly on the new pixel grid, we need to use the 

intensity values from the four nearest pixels in the 

original image: (𝑥1, 𝑦1) = (129,129). 

(𝑥2, 𝑦1) = (130,129) 

(x1,y2)=(129,130) 

(𝑥2, 𝑦2) = (130,130) 

Let the pixel intensities at each of these points be: 

𝐼(𝑥1, 𝑦1) = 𝐼(129,129) 

𝐼(𝑥2, 𝑦1) = 𝐼(130,129) 

𝐼(𝑥1, 𝑦2) = 𝐼(129,130) 

𝐼(𝑥2, 𝑦2) = 𝐼(130,130) 

We start with horizontal interpolation to obtain the 

intensity value between (𝑥1, 𝑦1) and (𝑥2, 𝑦1) at the 

coordinate (𝑥′, 𝑦1), and between (𝑥1, 𝑦2) and (𝑥2, 𝑦2) 

at the coordinate (𝑥′, 𝑦2) 

𝐼(𝑥′, 𝑦1) = 𝐼(𝑥1, 𝑦1) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦1) × 𝛼 

𝐼(𝑥′, 𝑦2) = 𝐼(𝑥1, 𝑦2) × (1 − 𝛼) + 𝐼(𝑥2, 𝑦2) × 𝛼 

Where α=x′−x1=129.39−129=0.39 

Thus, we can calculate: 

𝐼(𝑥′, 𝑦1) = 𝐼(129,129) × (1 − 0.39) + 𝐼(130,129) × 0.39  

𝐼(𝑥′, 𝑦2) = 𝐼(129,130) × (1 − 0.39) + 𝐼(130,130) × 0.39 

After obtaining 𝐼(𝑥′, 𝑦1) and 𝐼(𝑥′, 𝑦2), we perform 

vertical interpolation to calculate the final intensity 

value at the coordinate (𝑥′, 𝑦′): 

𝐼(𝑥′, 𝑦′) = 𝐼(𝑥′, 𝑦1) × (1 − 𝛽) + 𝐼(𝑥′, 𝑦2) × 𝛽 

Where: 

𝛽 = 𝑦′ − 𝑦1 = 129.39 − 129 = 0.39 
𝐼(𝑥′, 𝑦′) = 𝐼(𝑥′, 𝑦1) × (1 − 0.39) + 𝐼(𝑥′, 𝑦2) × 0.39 

If  𝐼(𝑥′, 𝑦1) = 𝑎; 𝐼(𝑥′, 𝑦2) = 𝑏 

Then:  

𝐼(𝑥′, 𝑦′) = 𝑎 × (1 − 0.39) + 𝑏 × 0.39  

𝐼(𝑥′, 𝑦′) = 𝑎 × 0.61 + 𝑏 × 0.39 

Thus, we can determine the pixel intensity value at 

(𝑥′, 𝑦′), which is the result of interpolation from the 

four nearest pixels in the original image. This process 

is applied to every pixel in the new image, resulting in 

a resized image from 296x296 to 255x255 pixels with 

smoother transitions. 

 

Figure 7. Filter Gaussian 

From the results of the image that has been converted 

to grayscale and resized to 255x255 pixels, the next 

step is noise removal from the image using the 

Gaussian filter equation shown in Figure 7. Here, we 

demonstrate the calculation using a 3x3 pixel example 

we previously illustrated, 

 Image= [
181 180 180
180
179

179 180
179 127

] 

𝐾𝑒𝑟𝑛𝑒𝑙 = [
0.0613 0.1221 0.0613
0.1221
0.0613

0.2442 0.1221
0.1221 0.0613

] 

To calculate the pixel value resulting from the 

Gaussian filter at the center position (1,1) of the image, 

we perform a convolution with the Gaussian kernel: 

𝑅𝑒𝑠𝑢𝑙𝑡 = ∑ ∑ (Image[i + 1, j + 1] × Kernel[i + 1, j + 1])1
𝑗=−1

1
𝑖=−1   

With the updated pixel values, the pixel value resulting 

from the Gaussian filter for the center position (1,1) on 

the given 3x3 grayscale image is approximately 

171.60. In this way, you can calculate the resulting 

pixel values for the entire image if the image is larger, 

by sliding the Gaussian kernel to each pixel position 

and performing the convolution calculation. 

Next is contrast adjustment, which aims to enhance the 

difference between light and dark areas in the image to 

make the details clearer. 

 

Figure 8. contrast adjustment 
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To achieve the results as shown in Figure 8, the author 

applied contrast adjustment using equation (8), where 

we want to set the contrast with α=1.5 (contrast factor) 

and β=0 (brightness offset). This results in updated 

values for each pixel. 

After the contrast adjustment with α=1.5 and β=0, the 

resulting image is: 

𝐼𝑚𝑎𝑔𝑒 = [
181 180 180
180
179

179 180
179 127

] 

At this step, each pixel value has been adjusted 

according to the given contrast factor and clipped to the 

0-255 range. This is the result of the contrast 

adjustment, which enhances the difference between 

light and dark areas in the image shown in Table 1. 

Table 1. The result of the contrast adjustment on 3x3 pixel image 

Pixel 

(x, y) 

Original 

Intensity 
α × I(x, y) 

Offset 

β 

Result 

I'(x, y) 

Clamping 

Result 

(0, 0) 181 271.5 0 271.5 255 

(0, 1) 180 270 0 270 255 

(0, 2) 180 270 0 270 255 

(1, 0) 180 270 0 270 255 

(1, 1) 179 268.5 0 268.5 255 

(1, 2) 180 270 0 270 255 

(2, 0) 179 268.5 0 268.5 255 

(2, 1) 179 268.5 0 268.5 255 

(2, 2) 127 190.5 0 190.5 190 

In the integral image process, the result of contrast 

adjustment will be calculated using Equation 9 which 

produces Figure 9 as shown in Table 2. 

 

Figure 9. Integral Image  

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 = [
255 255 255
255
255

255 255
255 190

] 

Table 2. Integral image calculation results on 3x3 pixels 

Pixel 

(x,y) 

Intensity 

I'(x,y) 

Integral 

(x,y) 
Calculation 

(0, 0) 255 255 255 

(0, 1) 255 510 255+255 

(0, 2) 255 765 510+255 

(1, 0) 255 510 255+255 

(1, 1) 255 1020 510+510 

(1, 2) 255 1275 765+255 

(2, 0) 255 765 510+255 

(2, 1) 255 1275 765+510 

(2, 2) 190 1720 1275+190 

Integral Image is a cumulative table that stores the sum 

of pixels from the top-left corner to a specific point in 

the image, allowing for more efficient calculation of 

Haar-Like features. Haar-Like features are used to 

detect certain patterns in an image, such as edges, 

corners, or lines, by calculating the difference between 

dark and light areas in rectangular shapes. By using the 

Integral Image, Haar-Like features are calculated 

quickly without requiring access to individual pixels. 

Once the Haar-Like features are computed, a Haar 

Cascade Classifier is applied to detect faces by testing 

specific patterns that have been learned. If the 

recognized pattern matches a face pattern, a bounding 

box is drawn around the face in the image (Figure 10). 

This process enables accurate and effective face 

detection in grayscale images by utilizing specific 

features and efficient data structures. 

Extracted features for face at (x=14, y=14): 

 
[1.359e+03 0.000e+00 2.000e+00 0.000e+00 0.000e+00 2.000e+00 1.000e+00 

4.000e+00 0.000e+00 4.000e+00 4.000e+00 2.000e+00 3.000e+00 7.000e+00 

1.400e+01 1.100e+01 1.100e+01 2.100e+01 2.000e+01 2.900e+01 3.800e+01 

4.700e+01 6.000e+01 5.500e+01 6.800e+01 8.500e+01 9.200e+01 1.140e+02… 

 

Figure 10. result of the haar cascade classifier 

Once the face has been detected in the previous process, 

the next step is to divide the face into small blocks, such 

as blocks sized 3x3 pixels. Each of these small blocks 

will be processed to calculate what we call the Local 

Binary Pattern (LBP), as shown in Figure 11. The 

program works by taking one pixel in the center of the 

block as the central pixel, and then comparing the 

intensity value of this central pixel with its neighbors 

around the 3x3 block. 

 

Figure 11. LBP operation 

If the neighbor's value is greater than or equal to the 

central pixel, we assign a value of 1. Conversely, if the 

neighbor is less than the central pixel, we assign a value 

of 0. These values then form a binary pattern. For 

example, if we have a central pixel with an intensity of 

52, and its neighbors have higher values like 162, 170, 

180, and so on, we will get a binary pattern of all 1s. 
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This binary pattern is then converted into a decimal 

value. In this case, the binary 11111111 will be 

converted to 255 in decimal.  

After the decimal values are obtained from each central 

pixel throughout the face, these values are organized 

into a histogram representing the overall facial features. 

This histogram contains the frequency of binary 

patterns found in the face blocks. This histogram 

becomes the feature vector that can be used to match 

someone's face with stored facial data. 

 

Figure 12. The test results for face recognition offline. 

The graph in Figure 12 shows the results of face 

recognition testing using the LBPH (Local Binary 

Patterns Histograms) algorithm in two different 

scenarios: offline and real-time recognition. In the 

offline testing, one face data is selected from a dataset 

containing 50 faces and then matched one by one with 

all the faces in the dataset shown in Table 3. The graph 

shows that the confidence level in offline face 

recognition varies between 80.5% and 85.5% with an 

average of 83.6%. The fluctuations observed reflect 

variations in the quality or similarity of faces in the 

dataset, with some significant drops indicating that 

certain faces may have weaker or different features 

compared to others in the dataset.  

Table 3. The test results for face recognition offline. 

No Dataset 

Image 

Confidence 

(%) 

Time Taken 

(S) 

1 face_0,jpg 83,43 0,014 

2 face_1,jpg 84,33 0,0152 

3 face_2,jpg 84,13 0,014 

4 face_3,jpg 84,41 0,015 

5 face_4,jpg 84,06 0,015 

6 face_5,jpg 84,87 0,0141 

7 face_6,jpg 84,21 0,0163 

8 face_7,jpg 83,3 0,0171 

9 face_8,jpg 84,23 0,0153 

10 face_9,jpg 83,8 0,0161 

11 face_10,jpg 85,08 0,0183 

12 face_11,jpg 84,59 0,0162 

13 face_12,jpg 84,59 0,0161 

14 face_13,jpg 85,09 0,0152 

15 face_14,jpg 84,88 0,0151 

16 face_15,jpg 84,58 0,0161 

No Dataset 

Image 

Confidence 

(%) 

Time Taken 

(S) 

17 face_16,jpg 83,96 0,014 

18 face_17,jpg 84,95 0,0132 

19 face_18,jpg 85,27 0,0171 

20 face_19,jpg 84,71 0,0141 

21 face_20,jpg 84,47 0,0142 

22 face_21,jpg 84,52 0,0141 

23 face_22,jpg 84,38 0,0141 

24 face_23,jpg 84,11 0,0141 

25 face_24,jpg 81,55 0,0132 

26 face_25,jpg 81,11 0,0142 

27 face_26,jpg 82,34 0,0151 

28 face_27,jpg 83,42 0,0142 

29 face_28,jpg 82,91 0,0143 

30 face_29,jpg 83,34 0,0134 

31 face_30,jpg 82,37 0,0141 

32 face_31,jpg 82,31 0,0143 

33 face_32,jpg 83,5 0,0141 

34 face_33,jpg 82,36 0,0151 

35 face_34,jpg 83,41 0,014 

36 face_35,jpg 83,17 0,0142 

37 face_36,jpg 82,64 0,0152 

38 face_37,jpg 82,37 0,0133 

39 face_38,jpg 82,62 0,0142 

40 face_39,jpg 82,66 0,0141 

41 face_40,jpg 82,59 0,0142 

42 face_41,jpg 83,33 0,0131 

43 face_42,jpg 82,04 0,0141 

44 face_43,jpg 83,44 0,0142 

45 face_44,jpg 83,92 0,0142 

46 face_45,jpg 83,86 0,0152 

47 face_46,jpg 83,1 0,017 

48 face_47,jpg 83,55 0,0141 

49 face_48,jpg 83 0,0143 

50 face_49,jpg 83,28 0,0142 

Average 83,6028 0,014712 

Meanwhile, in real-time testing, the face captured every 

second is directly matched with the 50 face data in the 

same dataset shown in Table 4. The graph in Figure 13 

on the right shows confidence levels ranging from 72% 

to 81% with an average of 77.67%. The greater 

fluctuations in this graph indicate that changes in 

conditions during image capture, such as lighting, 

position, or facial expression, greatly affect the 

accuracy of recognition. Overall, offline recognition 

appears more stable compared to real-time, although 

both suggest that the quality of facial images and 

environmental conditions are crucial to achieving more 

accurate and consistent recognition results. 

Table 4. The test results for face recognition in real-time. 

No 
Dataset 

Image 

Confidence 

(%) 

Time 

Taken(s) 

1 face_0,jpg 75,51 0,0205 

2 face_1,jpg 78,75 0,02 

3 face_2,jpg 78,26 0,019 

4 face_3,jpg 79,62 0,018 

5 face_4,jpg 77,96 0,018 

6 face_5,jpg 78,87 0,0188 

7 face_6,jpg 78,69 0,021 

0
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No 
Dataset 

Image 

Confidence 

(%) 

Time 

Taken(s) 

8 face_7,jpg 77,81 0,0205 

9 face_8,jpg 77,97 0,022 

10 face_9,jpg 78,87 0,02 

11 face_10,jpg 77,23 0,021 

12 face_11,jpg 77,64 0,019 

13 face_12,jpg 78,02 0,019 

14 face_13,jpg 76,56 0,019 

15 face_14,jpg 75,9 0,0195 

16 face_15,jpg 77,07 0,021 

17 face_16,jpg 77,78 0,0165 

18 face_17,jpg 77,06 0,02 

19 face_18,jpg 78,06 0,019 

20 face_19,jpg 77,4 0,0195 

21 face_20,jpg 76,5 0,022 

22 face_21,jpg 76,42 0,021 

23 face_22,jpg 76,61 0,022 

24 face_23,jpg 76,52 0,0209 

25 face_24,jpg 73,26 0,0207 

26 face_25,jpg 73,54 0,0195 

27 face_26,jpg 75,12 0,019 

28 face_27,jpg 77,15 0,017 

29 face_28,jpg 76,61 0,02 

30 face_29,jpg 78,38 0,029 

31 face_30,jpg 77,54 0,045 

32 face_31,jpg 78,89 0,0185 

33 face_32,jpg 78,58 0,019 

34 face_33,jpg 77,49 0,0204 

35 face_34,jpg 78,48 0,019 

36 face_35,jpg 77,03 0,019 

37 face_36,jpg 79,27 0,021 

38 face_37,jpg 77,55 0,019 

39 face_38,jpg 78,75 0,021 

40 face_39,jpg 78,97 0,02 

41 face_40,jpg 78,88 0,0175 

42 face_41,jpg 78,12 0,0815 

43 face_42,jpg 78,76 0,019 

44 face_43,jpg 79,22 0,052 

45 face_44,jpg 77,91 0,018 

46 face_45,jpg 78,45 0,019 

47 face_46,jpg 77,2 0,02 

48 face_47,jpg 78,36 0,023 

49 face_48,jpg 79,17 0,019 

50 face_49,jpg 79,91 0,019 

Average 77,6734 0,022246 

 

 

Figure 13. The test results for face recognition realtime. 

3.2 Face Tracker Evaluation 

Table 5 shows the results of an experiment with a robot 

designed to follow a face. The face position is displayed 

in the form of pixel coordinates X and Y taken from the 

camera. For example, in the first row, the face position 

is detected at X = 302 and Y = 212. The camera captures 

the face at that point. The robot's servo then adjusts its 

position based on the face movement. In the first 

example, the servo does not need to move because the 

face is already centered. However, in the second row, 

the face shifts to X = 459 and Y = 204, so the servo 

changes its position to X = 137° and Y = 79° to follow 

the movement to the upper right. 

Table 5. The test results for face tracker. 

Position 

Face 

Position 

(pixel) 

Servo 

Position (°) 

Move

ment Time 

(s) 

x y x y x y 

 
 

302 212 110 90 C C 0 

 
 

459 204 137 79 R U 2.314 

 
 

 

399 278 132 96 L D 1.945 

 

 
 

518 342 139 105 R D 2.952 

 
 

219 302 91 94 L U 3.561 

 

 

 
391 159 119 82 R U 3.013 

The robot also moves to align with the face's direction. 

In the second example, the face is detected on the right 

and upward, so the robot moves to the right and upward 

to adjust its position. The time taken to adjust the face 

back to the center position is also recorded. In the 

second row, the robot takes 2.314 seconds to make this 

adjustment. Additionally, images captured by the 

camera are included for each position change, providing 

visual confirmation that the robot is accurately 

following the face movement. This table illustrates how 

the robot reacts to face movements, adjusts its servo 

positions, and records the time needed to center the face 

back on the screen. 

3.3 Discussions 

The results of testing the face recognition system using 

the Local Binary Patterns Histogram (LBPH) algorithm 

indicate that this method can provide an adequate level 

of accuracy in both offline and real-time modes, 
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although several factors influence system performance. 

In offline testing, an average accuracy of 83.6% shows 

that LBPH can recognize faces well when the database 

facial data has high quality and uniformity. Accuracy 

fluctuations ranging from 80.5% to 85.5% suggest 

variability in face recognition, which could be caused 

by differences in perspective or lighting in the dataset. 

Real-time testing, with an average accuracy of 77.67%, 

reveals that environmental dynamics such as changes in 

lighting and facial expressions directly affect the results 

of face recognition shown in Table 6. 

Table 6. Results of the comparison between offline and real-time 

face recognition. 

Mode 

Minimum 

Accuracy 

(%) 

Maximum 

Accuracy 

(%) 

Average 

Accuracy 

(%) 

Offline 80.5 85.5 83.6 

Real-time 72.0 81.0 77.67 

This indicates that the system is more sensitive to 

changing real-time conditions, which is a common 

challenge in direct face recognition applications. The 

difference in processing times between offline and 

online modes is primarily due to the computational load 

involved in real-time image acquisition and processing. 

In offline mode, pre-captured images are already stored 

in memory, allowing the system to focus solely on 

recognition tasks, leading to more consistent processing 

times. However, in online mode, the system must 

simultaneously handle image acquisition, pre-

processing (grayscale conversion, noise reduction, and 

contrast adjustment), and recognition. Factors such as 

varying lighting conditions and rapid facial movements 

can add additional processing time, resulting in 

increased variability in response times. 

On the other hand, the servo movements in the robot 

designed to follow the user's face showed positive 

results, with response times ranging from 1.945 seconds 

to 3.561 seconds. This demonstrates that the robot can 

adjust its position quickly and accurately, enabling 

more natural interaction between the robot and the user. 

Although these results are satisfactory, there is room for 

further improvements, particularly in optimizing the 

system to handle more challenging environmental 

conditions and to speed up the robot's response time. 

Overall, this study successfully demonstrates the great 

potential of implementing face recognition systems in 

receptionist robots, though there is still room for 

refinement to address various practical challenges in the 

field. 

4. Conclusions 

This research successfully developed a memory-

efficient face recognition system using the Local Binary 

Patterns Histogram (LBPH) algorithm implemented on 

a Raspberry Pi-based receptionist robot. The test results 

show that the LBPH algorithm is capable of providing 

good face recognition accuracy, with an average 

accuracy of 83.6% in offline mode and 77.67% in real-

time mode. Nonetheless, the system is still affected by 

environmental changes such as lighting and facial 

expressions, which affect recognition accuracy. 

Additionally, the designed robot is capable of 

accurately following the user's facial movements, with 

a fairly fast servo response time of between 1.945 

seconds and 3.561 seconds, supporting responsive and 

natural interaction with the user. Although the results 

are satisfactory, this research identifies several areas for 

improvement, such as further optimization for handling 

dynamic environmental conditions and improving the 

robot's response speed. Overall, the developed system 

shows great potential for implementation in interactive 

and efficient receptionist robot applications. 
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