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Abstract  

Facial recognition is a critical biometric identification method in modern security systems, yet it faces significant challenges 

under varying lighting conditions, particularly when dealing with near-infrared (NIR) images, which exhibit reduced 

illumination compared to visible light (VIS) images. This study aims to evaluate the performance of Convolutional Neural 

Networks (CNNs) in addressing the Cross-Spectral Cross-Distance (CSCD) challenge, which involves face identification 

across different spectra (NIR and VIS) and varying distances. Three CNN models—VGG16, ResNet50, and EfficientNetB0—

were assessed using a dataset comprising 800 facial images from 100 individuals, captured at four different distances (1m, 

60m, 100m, and 150m) and across two wavelengths (NIR and VIS). The Multi-task Cascaded Convolutional Networks 

(MTCNN) algorithm was employed for face detection, followed by image preprocessing steps including resizing to 224x224 

pixels, normalization, and homomorphic filtering. Two distinct data augmentation strategies were applied: one utilizing 10 

different augmentation techniques and the other with 4 techniques, trained with a batch size of 32 over 100 epochs. Among the 

tested models, VGG16 demonstrated superior performance, achieving 100% accuracy in both training and validation phases, 

with a training loss of 0.55 and a validation loss of 0.612. These findings underscore the robustness of VGG16 in effectively 

adapting to the CSCD setting and managing variations in both lighting and distance. 
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1. Introduction  

Facial recognition is a biometric technique that employs 

the analysis of facial characteristics to distinguish 

between individuals. The importance of this technology 

is growing in a number of fields, including security, 

surveillance, and access control [1], [2]. Its versatility 

means that it is being used in a wide range of sectors, 

from law enforcement to consumer services. This 

creates a pressing need for reliable and accurate facial 

recognition systems that can perform well in a variety 

of conditions. In the real world, facial recognition 

systems must be able to operate effectively in different 

lighting and distance conditions, which present 

significant challenges to their accuracy and reliability 

[3] - [5]  

One of the fundamental concepts in the field of face 

recognition is that of Cross-Spectral Cross Distance 

(CSCD). CSCD assesses the capacity of a system to 

identify faces across diverse lighting conditions and 

distances. For example, face recognition should remain 

precise even when images are captured during the day 

with visible light (VIS) or at night with near-infrared 

light (NIR), and from both near and far distances. 

CSCD strives to enhance the resilience and 

dependability of face recognition systems in the context 

of lighting and distance variations, a prevalent 

challenge in surveillance and security applications [3]. 

The utilization of disparate light spectra, including NIR 

and VIS, is frequently employed to enhance the efficacy 

of face recognition in diverse lighting scenarios. NIR 

images are generated from the heat emitted by objects 

captured by the camera, enabling face detection in low-

light or even total darkness conditions. In contrast, VIS 

images are generated from light reflected by objects and 

captured by the camera, which is commonly used in 

good lighting conditions. While using these two types 
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of spectra allows face recognition systems to function 

well in various lighting conditions, it also poses 

challenges in data processing and analysis due to the 

different image characteristics. 

In recent years, Convolutional Neural Network (CNN) 

models have demonstrated considerable efficacy in a 

range of pattern recognition tasks, including face 

recognition. CNN models offer the advantage of high-

degree accuracy in face recognition through their 

capacity for deep feature extraction. However, the 

efficacy of these models under different lighting 

conditions and at varying distances remains 

underexplored, particularly in the context of datasets 

comprising NIR and VIS images [6] - [11]. Moreover, 

previous studies have often been limited by the 

availability of data that captures the variability in 

spectral and distance conditions, highlighting the need 

for advanced data augmentation techniques to enrich 

the dataset and enhance model performance. Data 

augmentation refers to the process of modifying and 

enriching the dataset with diverse transformations that 

aim to enhance the dataset's diversity and facilitate 

more effective facial pattern recognition by the model 

[12] - [14]. 

Previous studies have explored the phase-based CSCD 

approach to face recognition for use in security and 

surveillance applications. For instance, experiments 

conducted using the Long-Distance Heterogeneous 

Face Database (LDHF-DB) with homomorphic filtering 

for photometric normalization and band-limited phase-

only correlation (BLPOC) for image matching have 

demonstrated that Equal Error Rate (EER) and Genuine 

Acceptance Rate (GAR) can be optimized under certain 

conditions [3]. However, these studies were often 

limited to specific scenarios and did not 

comprehensively address the combined impact of 

spectral and distance variability on CNN performance. 

In addition, other research efforts have proposed 

methods such as combining wavelet-based Histogram 

of Oriented Gradients (HOG) and Local Binary Pattern 

(LBP) features to improve face recognition at long 

distances, particularly in low-light conditions [15]. 

Despite these advancements, there remains a significant 

gap in understanding how different CNN architectures 

perform under these challenging conditions, especially 

when integrated with innovative pre-processing and 

data augmentation techniques. 

While substantial progress has been made in the 

development of facial recognition systems, there 

remains a critical gap in the literature regarding the 

performance of CNN models across varying spectral 

and distance conditions, particularly in the context of 

VIS and NIR datasets. Most existing studies have either 

focused on limited distance ranges or have not fully 

explored the effects of cross-spectral variations on CNN 

accuracy. Additionally, there is a lack of comprehensive 

studies that combine homomorphic filtering with 

advanced data augmentation techniques to address 

these challenges. 

This research aims to address these gaps by evaluating 

the performance of three CNN models—ResNet50, 

EfficientNetB0, and VGG16—in recognizing faces 

across disparate light spectra (VIS and NIR) and at 

varying distances. Specifically, the study investigates 

how these models perform in classifying faces and 

explores the impact of data augmentation on model 

performance. Before data augmentation, homomorphic 

filtering is employed as a pre-processing step to 

enhance image quality by addressing issues of poor 

lighting and shadows, resulting in a more consistent 

image for subsequent processing. Additionally, this 

research investigates the influence of diverse data 

augmentation techniques on training and validation 

accuracy. 

By expanding on existing research, this study not only 

contributes to the understanding of CNN model 

performance under different lighting conditions but also 

offers practical solutions that can be implemented in 

real-world face recognition systems. The findings are 

expected to provide insights into improving the overall 

effectiveness and reliability of facial recognition 

technology in security and surveillance applications, 

thereby addressing the existing gaps in the literature.  

2. Research Methods 

The research commenced with the collection of the 

Long-Distance Heterogeneous Face Database (LDHF-

DB) dataset. The datasets were then categorized into 

two classes and subsequently separated into two parts, 

namely training and validation datasets. The details of 

the research stages are illustrated in Figure 1. 

 

Figure 1. Research Diagram 

 

The research diagram depicts a set of image data (VIS 

and NIR datasets), which are subjected to a series of 
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preprocessing stages. These include face detection 

using MTCNN, image resizing to 224x224 pixels, and 

the division of the dataset into three distinct subsets: 

70% training data, 15% validation data, and 15% testing 

data. Subsequently, data augmentation was employed to 

enhance the diversity of the data set and to facilitate the 

removal of any extraneous noise, thereby improving the 

overall image quality. 

Subsequently, the dataset was divided into two distinct 

subsets: training data and validation data. The deep 

learning model was then trained using three different 

architectures: ResNet50, EfficientNetB0, and VGG16. 

During the training phase, various parameters, 

including the learning rate, batch size, and epoch, were 

adjusted to optimize the training process. Subsequently, 

the model's performance was evaluated using the 

validation data, allowing for an assessment of the 

model's ability to recognize faces in previously unseen 

data. 

2.1 Dataset 

The dataset used in this study is derived from the 

pypi.org/project/bob.db.ldhf database and is designated 

as LDHF-DB. Table 1 illustrates the distribution of 

images based on spectrum and distance. Two distinct 

spectra were employed: visible (VIS) and near-infrared 

(NIR). Each spectrum comprises samples of images 

captured at four distinct distances: 1 meter, 60 meters, 

100 meters, and 150 meters. For each distance and 

spectrum, 100 images were captured, with 70 male and 

30 female subjects. The total number of images for the 

visible spectrum was 400, and the total for the near-

infrared spectrum was also 400, resulting in a total of 

800 images used in this study. Figure 2 illustrates 

examples of the dataset used for the visible and near-

infrared spectra. 

Table 1. Number of Datasets in LDHF-DB 

Spectrum 
Distance 

Total 
1m 60m 100m 150m 

VIS 100 100 100 100 400 

NIR 100 100 100 100 400 

Total         800 

 

Figure 2. NIR images (top) and VIS images (bottom) at distances of 

1m (a), 60m (b), 100m (c), and 150m (d). 

2.2 Preprocessing  

At this juncture, images of visible and near-infrared 

wavelengths, captured at distances of 1m, 60m, 100m, 

and 150m respectively, with 100 images at each 

distance, underwent a face detection process using 

MTCNN (Multi-Task Cascaded Convolutional Neural 

Network) [16] - [18]. This process resulted in 400 

images of visible light and 400 images of near-infrared 

light. The facial detection results were then resized to 

224x224 pixels to comply with the requirements of the 

pre-trained model. 

The data was divided using the Split Validation 

technique. The distribution of data used in the study was 

70% for training, 15% for validation, and 15% for 

testing. This proportion ensures a balanced 

representation of both data sets [13], as detailed in Table 

2. 

Table 2. Dataset Distribution 

Data Class Total 

Training 
NIR 280 
VIS 280 

Validation 
NIR 60 

VIS 60 

Testing 
NIR 60 

VIS 60 

2.3 Homomorphic Filtering 

Homomorphic filtering is an effective method for 

enhancing contrast and adjusting brightness in images, 

particularly when the images suffer from poor 

illumination. This technique is especially beneficial for 

images with uneven lighting or prominent shadows, as 

it works by separating the image's illumination and 

reflectance components, processing these components 

separately, and then recombining them. The algorithm 

for homomorphic filtering typically involves several 

stages, including Logarithmic Transformation, Discrete 

Fourier Transformation (DFT), Inverse Discrete 

Fourier Transformation (IDFT), and Exponential 

Transformation, with H(u,v) representing the filter 

applied during the process. Equation 1 can describe the 

homomorphic filtering process: 

𝑓(𝑥, 𝑦) → 𝑙𝑛 → 𝐷𝐹𝑇 → 𝐻(𝑢, 𝑣) → (𝐷𝐹𝑇)−1 →
𝑒𝑥𝑝 → 𝑔(𝑥, 𝑦)      

      (1) 

f(x,y) is input image, ln is logarithmic transformation, 

DFT is Discrete Fourier Transform, H( u,v) is the 

application of filter, DFT is the Inverse Fourier 

Transform and exp stands for exponential 

transformation. 

 

Figure 3 Preprocessing Result 

VIS NIR VIS NIR

1m

60m

100m

150m

Homomorphic FilteringMTCNN
Distance
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Figure 3 shows the dataset results after the MTCNN 

process and application of a homomorphic filter. 

2.4 Data Augmentation  

The augmentation of data is achieved by transforming 

each image into distinct forms. Generating more images 

can prevent overfitting, enhance accuracy, and improve 

the model quality [19] - [24]. This is accomplished 

through the use of the Image Data Generator, which 

performs the augmentation process on the dataset [25], 

[26]. The two principal aspects of the proposed method 

are evaluated through the assessment of the model 

results in two scenarios. 

The data was subjected to generalization using eight 

augmentation strategies: rescale, rotation range, width 

shift range, height shift range, horizontal flip, shear 

range, zoom range, and brightness range, as well as 

channel shift range and Gaussian noise. 

The data was augmented using four strategies: rotation 

range, width shift range, horizontal flip, and Gaussian 

noise. 

Table 3. Types of Data Augmentation Parameters 

Parameter Value 

Rescale 1./255 

rotation_range 40˚ 

  width_shift_range 0.2 

  height_shift_range 0.2 

  horizontal_flip True 

  shear_range 0.2 

  zoom_range 0.2 

  Brightness_range [0.8, 1.2] 

 Channel_shift_range 0.2 

 Gaussian_noise Noise 

Table 3 presents the parameters used for data 

augmentation, which were employed with eight 

augmentation strategies to generate a new dataset. 

These strategies included rescaling, rotation range, 

width shift range, height shift range, horizontal flip, 

shear range, zoom range, brightness range, channel shift 

range, and Gaussian noise. The results of the data 

augmentation process, which generated 5,040 

instances, were used as the training dataset for each of 

the three models in subsequent analysis. Figure 4 

provides illustrative examples of the augmentation 

techniques employed. 

 

Figure 4. Examples of Data Augmentation on Facial Images 

2.5. Model Architecture 

The architectural model employed in this study 

comprises three convolutional neural network (CNN) 

models, incorporating transfer learning techniques. 

These include ResNet50 [27], EfficientNetB0 [28], and 

VGG16 [29]. Table 4 provides a summary of the 

principal differences between the three CNN models. 

The models under consideration are VGG16, ResNet50, 

and EfficientNetB0 [30] - [32]. 

Table 4. Types of Data Augmentation Parameters 

Feature VGG16 ResNet50 EfficientNetB0 

Architecture Sequential, Simple Residual Blocks Compound Scaling 
Number of Layers 16 layers 50 layers 236 layers 

Main Block Conv + ReLU + MaxPool 
Conv + BatchNorm + ReLU + 

Shortcut (Residual Block) 

MBConv (Mobile Inverted 

Bottleneck) 
Model Size ~528 MB ~98 MB ~20 MB 

Depth Stacked Convolutions Residual Blocks MBConv Blocks 

Main Advantage Simplicity and ease of implementation 
Addresses degradation in deep 

networks 

High efficiency and accuracy 

with fewer parameters 

Main Disadvantage 
Large number of parameters, prone to 

overfitting 

Higher computational 

complexity 

Requires precise tuning for 

compound scaling 

Computation Slow due to many parameters 
Faster than VGG16 with fewer 

parameters 

High efficiency with better 

computational performance 

For further details, please refer to Table 6. VGG16 has 

a relatively straightforward architectural configuration 

comprising 16 layers. The primary blocks include a 

convolutional layer, a rectified linear unit (ReLU), and 

a max-pooling layer. The model is relatively slow due 

to the large number of parameters and is susceptible to 

overfitting. The ResNet50 model features a more 

intricate architectural design with 50 layers. It employs 

residual blocks to effectively address potential 

degradation issues within the network. It offers 

enhanced speed and efficiency compared to VGG16, 

although with higher computational complexity. 

EfficientNetB0 employs composite scaling and 

MBCConv as its primary blocks, demonstrating 
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excellent scalability. The hyper-parameters employed 

throughout the training, validation, and testing phases 

are detailed in Table 5. 

Table 5. Hyperparameters 

Hyperparameter Value 

CNN Models 
ResNet50, EfficientNetB0, and 

VGG16 

Image Size 224x224 pixels 

Dataset Size 5040 training images 

Number of Classes Training, Validation, Testing 

Batch Size 32 

Training Epoch 100 epochs 

3. Results and Discussions 

3.1. Preprocessing Result 

The facial detection process, conducted using the 

MTCNN algorithm, yielded a total of 400 VIS images 

and 340 NIR images. The facial recognition system was 

unable to detect the faces of six subjects at a distance of 

60 meters, nine subjects at a distance of 100 meters, and 

45 subjects at a distance of 150 meters. Subsequently, 

the images were resized to a resolution of 224 x 224 

pixels and normalized using homomorphic filtering. 

The Image Data Generator was employed to apply eight 

augmentation techniques to create a new dataset. These 

techniques included rotation range, width shift range, 

height shift range, horizontal flip, shear range, zoom 

range, fill mode, and Gaussian noise at each epoch. 

Each model was trained using a distinct set of images. 

The impact of data augmentation on the entire training 

dataset for the three CNN models (ResNet50, 

EfficientNetB0, and VGG16) will be investigated. 

3.2. Model Performance with Comparison 

Once the training and validation procedures were 

completed and the various augmentation techniques 

were incorporated, the results of the accuracy 

assessments were presented in Tables 6 and 7. 

Table 6a. Accuracy Results (Scenario I) 

Model 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

ResNet50 100% 100% 50% 

EfficientNetB0 99,46% 100% 50% 

VGG16 100% 99% 55% 

 

Table 6b. Loss Results (Scenario I) 

Model 
Training 
Loss 

Validation 
Loss 

Testing 
Loss 

ResNet50 0.00093 0.000119 0.705126   

EfficientNetB0 0.0124 0.00091 0.768886   

VGG16 0.004 0.0305 0.687658   

Table 6(a,b) (Scenario I) presents the accuracy and loss 

results for three convolutional neural network (CNN) 

models: ResNet50, EfficientNetB0, and VGG16. All 

three models demonstrated exemplary performance on 

the training and validation datasets, with training 

accuracy approaching or reaching 100%. The ResNet50 

model exhibited the lowest training loss (0.00093), 

followed by VGG16 (0.004) and EfficientNetB0 

(0.0124). The validation accuracy for ResNet50 and 

EfficientNetB0 was 100%, while VGG16 achieved the 

highest testing accuracy of 55%. In contrast, ResNet50 

and EfficientNetB0 both exhibited a comparable testing 

accuracy of 50%. VGG16 also exhibited the lowest 

testing loss, followed by ResNet50 and then 

EfficientNetB0. However, there is a discrepancy in the 

testing loss, with VGG16 exhibiting the lowest loss 

(0.687658), followed by ResNet50 (0.705126) and 

EfficientNetB0 (0.768886). 

The three models, ResNet50, EfficientNetB0, and 

VGG16, demonstrated excellent performance on both 

the training and validation datasets, with almost perfect 

accuracy. However, a decline in testing accuracy was 

observed, reaching only 70%, which is indicative of 

overfitting. Among the three models, ResNet50 

exhibited the lowest testing loss, indicating a slight 

advantage in addressing the testing data compared to the 

other two models. 

 

Figure 8. Training and Validation Accuracy Curve of ResNet50 

 

Figure 9. Training and Validation Loss Curve of ResNet50 
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Figure 8 illustrates a marked increase in training 

accuracy in the initial epoch, reaching a value of nearly 

1.000, indicative of a rapidly learning model. Moreover, 

the validation accuracy exhibited a rapid increase and 

subsequent stability at approximately 1.000, indicating 

effective generalization. Figure 9 shows that the 

training loss started at approximately 0.35 and exhibited 

a notable decline towards zero over multiple epochs. 

The validation loss also showed a rapid decline and 

remained at a relatively low level, with only minor 

fluctuations. 

The ResNet50 model exhibited excellent performance, 

demonstrating high accuracy and low loss on both the 

training and validation datasets. This indicates that the 

model is both efficient and capable of generalization. 

 

Figure 10. Training and Validation Accuracy Curve of 

EfficientNetB0 

 

Figure 11. Training and Validation Loss Curve of EfficientNetB0 

Figure 10 illustrates that the training and validation 

accuracy rapidly attain a high and stable value of 

approximately 0.98 to 1.00. The validation accuracy is 

also relatively high but exhibits notable fluctuations, 

particularly after approximately 20 epochs. As shown 

in Figure 11, the training and validation loss decrease 

rapidly at the outset and then stabilize, indicating that 

the model is effectively learning from the training data. 

However, the validation loss displays considerable 

fluctuations over epochs, which may indicate 

overfitting or variation in the validation data. 

The EfficientNetB0 model demonstrates exemplary 

training performance, characterized by high accuracy 

and minimal loss. However, it is essential to consider 

the variability observed in the validation performance, 

which may indicate the necessity for further tuning to 

enhance generalization. 

 

Figure 12. Training and Validation Accuracy Curve of VGG16 

 

Figure 13. Training and Validation Loss Curve of VGG16 

As illustrated in Figure 12, the training and validation 

accuracy exhibited a rapid increase in the initial epochs, 

reaching a value of nearly 1.0. This indicates that the 

model demonstrated excellent and rapid generalization 

capabilities on the validation data. Figure 13 shows a 

notable reduction in training and validation loss at the 

initial epoch, approaching zero and maintaining a low, 

stable level. This suggests that the model is highly 
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effective at reducing errors in both datasets. The 

VGG16 model demonstrated optimal performance, 

achieving perfect accuracy with minimal loss, 

indicating excellent performance and robust 

generalization capabilities. 

Table 7a. Accuracy Results (Scenario II) 

Model Training 
Accuracy 

Validation 
Accuracy 

Testing 
Accuracy 

ResNet50 100% 100% 50% 

EfficientNetB0 100% 99.17% 50% 
VGG16 99.643% 100% 50% 

Table 7b. Loss Results (Scenario I) 

Model Training 

Loss 

Validation 

Loss 

Testing 

Loss 

ResNet50 0.00089 0.000153479 0.791316 
EfficientNetB0 0.1421 0.008552328 0.829076 

VGG16 0.0293 0.000000079 0.612032 

Table 7(a,b) (Scenario II) presents the accuracy and loss 

results for three convolutional neural network (CNN) 

models: ResNet50, EfficientNetB0, and VGG16. The 

three models demonstrated exemplary performance on 

the training and validation datasets, with training 

accuracy approaching or reaching 100%. The VGG16 

model exhibited the lowest training loss (0.000000079), 

followed by ResNet50 (0.000153479) and 

EfficientNetB0 (0.008552328). The validation 

accuracy for ResNet50 and VGG16 was 100%, while 

that for EfficientNetB0 was slightly lower at 99.17%. In 

the testing phase, all models demonstrated a consistent 

testing accuracy of 50%. However, there was a 

discrepancy in the testing loss data, with VGG16 

exhibiting the lowest loss (0.612032), followed by 

ResNet50 (0.791316) and EfficientNetB0 (0.829076). 

The overall performance of the ResNet50, 

EfficientNetB0, and VGG16 models on the training and 

validation datasets was excellent, with an almost perfect 

accuracy rate. However, on the testing dataset, there 

was a significant decline in performance, with only 50% 

accuracy, indicating the presence of overfitting. Among 

the three models, VGG16 exhibited the lowest testing 

loss, suggesting a slight advantage in handling the 

testing dataset compared to the other two models. 

Figure 14 depicts the performance of the ResNet50 

model throughout the training and validation phases. 

The graph demonstrates that the training accuracy 

increased rapidly and reached 100% in the initial 

epochs, maintaining a stable level throughout the 

remainder of the training process. The validation 

accuracy also reached 100% with minor fluctuations, 

indicating that the model was capable of maintaining 

high performance on unseen data. Figure 15 illustrates 

that the training loss declined significantly at the outset 

of training and remained low after several epochs. The 

validation loss also declined rapidly initially but 

exhibited greater fluctuations compared to the training 

loss. Nevertheless, the validation loss remained 

relatively low overall. 

 

 

Figure 14. Training and Validation Accuracy Curve of ResNet50 

 

Figure 15. Training and Validation Loss Curve of ResNet50 

 

 
Figure 16. Training and Validation Accuracy Curve of 

EfficientNetB0 
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Figure 17. Training and Validation Loss Curve of EfficientNetB0 

Figure 16 depicts the performance of the 

EfficientNetB0 model throughout the training and 

validation phases. The graph demonstrates that the 

training accuracy increased rapidly and reached 

approximately 100% in the initial few epochs, 

thereafter remaining stable at that level. Validation 

accuracy also approached 100%, with minor 

fluctuations across epochs. This suggests that the model 

can maintain high performance on previously unseen 

data during the training phase. Figure 17 illustrates that 

the training loss declines rapidly at the outset and then 

stabilizes at a minimal value. The validation loss also 

declines rapidly initially but exhibits greater 

fluctuations than the training loss. Nevertheless, the 

overall value of the validation loss remains low. 

 

Figure 18. Training and Validation Accuracy Curve of VGG16   

Figure 18 depicts the performance of the VGG16 model 

throughout the training and validation process. The 

graph demonstrates that the training accuracy increased 

rapidly, reaching almost 100% in the initial epochs and 

maintaining a stable level throughout the remainder of 

the training process. The validation accuracy also 

reached almost 100% in the initial epochs and remained 

stable at this level, indicating that the model was able to 

maintain high performance on unseen data. Figure 19 

illustrates that the training loss declined sharply at the 

outset and then stabilized at a minimal value. Similarly, 

the validation loss also decreased rapidly initially and 

remained at a low and stable level throughout the 

remainder of the training. 

 

Figure 19. Training and Validation Loss Curve of VGG16 

4. Conclusions  

This research examines the effectiveness of using 

Convolutional Neural Networks (CNNs), specifically 

the VGG16 model, for face recognition in a Cross-

Spectral Cross-Distance (CSCD) setting. This setting 

involves the use of near-infrared (NIR) and visible light 

spectra, as well as varying distances. The results 

indicate that VGG16 exhibits superior performance in 

this context compared to RESNET50 and 

EFFICIENTB0. This model achieved high training and 

validation accuracy with low loss, demonstrating strong 

adaptation to lighting and distance variations in the 

LDHF-DB dataset. The application of data 

augmentation techniques, particularly the use of 10 

different strategies, proved effective in increasing data 

diversity and optimizing model performance with a 

batch size of 32 and 100 epochs. Further research into 

more advanced data augmentation strategies is essential 

to improve model generalization and robustness to 

broader environmental variations. Therefore, future 

studies are expected to address the challenges of face 

recognition in heterogeneous environments more 

effectively. 
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